Structural design sensitivity analysis concerns the relationship between design variables available to the design engineer and structural responses determined by the laws of mechanics. The dependence of response measures such as displacement, stress, strain, natural frequency, buckling load, acoustic response, frequency response, noise-vibration-harshness (NVH), thermo-elastic response, and fatigue life on the material property, sizing, component shape, and configuration design variables is defined through the governing equations of structural mechanics. In this 2-volume set, first- and second- order design sensitivity analyses are presented for static and dynamics responses of both linear and nonlinear elastic structural systems, including elasto-plastic and frictional contact problems.
Book 2 covers design sensitivity analysis of nonlinear structural systems using continuum design sensitivity analysis methods. It also discusses practical design tools and applications; sizing and shape design parameterization, design velocity field computation, numerical implementation of the sensitivity for general-purpose code development, and various other practical design applications.
K. K. Choi is a Carver Professor of Mechanical Engineering at The University of Iowa. He teaches in the Mechanical and Industrial Engineering and the Applied Mathematical and Computational Sciences departments, and is a researcher in the Center for Computer-Aided Design. He has authored numerous publications and has twice won the ASME Best Paper Award.
N. H. Kim is an Assistant Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida. His research area is in structural design optimization, design sensitivity analysis, nonlinear structural mechanics, structural-acoustics, and the mesh-free method.
Both authors are members of several industry organizations including the American Society of Mechanical Engineers, the Korean-American Scientists and Engineers Association and the International Society for Structural and Multidisciplinary Optimization.
Design Sensitivity Analysis of Nonlinear Structural Systems.- Nonlinear Structural Analysis.- Nonlinear Sizing Design Sensitivity Analysis.- Nonlinear Shape Design Sensitivity Analysis.- Nonlinear Configuration Design Sensitivity Analysis.- Numerical Implementation and Applications.- Design Parameterization.- Numerical Implementation of Sensitivity Analysis.- Design Applications.