Ceramic Armor Materials by Design

eBook - Ceramic Transactions Series

96,95 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9781118381106
Sprache: Englisch
Umfang: 652 S., 33.38 MB
Auflage: 1. Auflage 2012
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

This proceedings book brings together 55 papers on ceramic armor presented by authorities from around the world covering topics such as ceramic armor development, processing, manufacturing, and insertion. This book will be of great interest to armor researchers in university, industry and government laboratories as well as those industries involved in ceramic armor and high performance structural ceramics. Papers were presented at PacRim IV, An International Conference on Advanced Ceramics and Glasses, Wailea, Maui, Hawaii, USA (2001).  650 pages.

Autorenportrait

James W. McCauley and Andrew Crowson are the authors of Ceramic Armor Materials by Design, published by Wiley.

Inhalt

Preface xi

CERAMIC ARMOR DEVELOPMENT

An Overview of Ceramic Armor Applications 3
William A. Gooch Jr., U.S. Army Research Laboratory

Armor Ceramics Under High-Velocity Impact of a Medium-Caliber Long-Rod Penetrator 23
Hans-Jürgen Ernst, Volker Wiesner; and Thomas Wolf, French-German Research Institute of Saint-Louis (ISL)

Practical Issues in Ceramic Armor Design 33
Bryn James, Defense Science and Technology Laboratories

Ballistic Development of Tungsten Carbide Ceramics for Armor Applications 45
Pierre-Frangois Peron, Etablissement Technique de Bourges

Ballistic Development of U.S. High Density Tungsten Carbide Ceramics 53
William A. Gooch and Matthew S. Burkins, U.S. Army Research

Laboratory; Richard Palicka, Cercom Incorporated Initial Tests on Ceramics in Composite Armor 63
W Lanz, RUAG Land Systems

Structure and Properties of Shock-Resistant Ceramics Developed at the Institute for Problems in Materials Science 73
B.A. Galanov, O.N. Grigoriev, S.M. Ivanov, and V.V. Kartuzov, National Academy of Sciences of Ukraine

Ceramic Armor with Submicron Alumina Against Armor Piercing Projectiles 83
E. Strassburger and B. Lexow, Fraunhofer-Institut für Kurzzeitdynamik Ernst-Mach-lnstitut (EMI); A. Krell, Fraunhofer-Institut für Keramische Technologien und Sinterwerkstoffe

Armor Alumina Ceramics 91
Eugene Medvedovski, Ceramic Protection Corporation

Ballistic Performance of Alumina Ceramic Armors 103
MuratVural and Zeki Erim, Istanbul Technical University; B.A. Konduk and A.H. Ucisik, Bogazici University

PENETRATION AND BALLISTIC TESTING

An Overview of Ballistic Testing Methods of Ceramic Materials 113
Michael J. Normandia and William A. Gooch, U.S. Army Research Laboratory

Theory and Experimental Test Methods for Evaluating Ceramic Armor Components 139
Marc A. Adams, jet Propulsion Laboratory

Long Rod Penetration of Ceramics 151
D.L. Orphal, International Research Associates

Depth of Penetration Testing 165
Bryn James, Defense Science and Technology Laboratories

Transition Between Interface Defeat and Penetration for a Given Combination of Projectile and Ceramic Material 173
Patrik Lundberg, Rene Renström, and Lars Westerling, Swedish Defense Research Agency, FOI

SHOCK AND HIGH STRAIN RATE DYNAMIC

Dynamic Fracture of Ceramics and CMC 185
Albert S. Kobayashi, University of Washington

Compressive Fracture of Brittle Solids Under Shock-Wave Loading 197
G. I. Kanel, Institute for High Energy Densities; S. J. Bless, The University of Texas at Austin

Recent Developments in Split Hopkinson Pressure Bar Testing 217
W. Chen and B. Song, The University of Arizona; D. J. Frew and M. J. Forrestal, Sandia National Laboratories

Using Bar Impact to Determine Dynamic Properties of Ceramics 225
Stephan J. Bless, The University of Texas at Austin

Shock Compression and Release Properties of Coors AD995 Alumina 233
William D. Reinhart and Lalit C. Chhabildas, Sanaa National Laboratories; Dennis E. Grady, Applied Research Associates; and Tsutomu Mashimo, Kumamoto University

Compressibility and Shear Strength of Titanium Diboride Under Plane Shock Wave Loading 249
D. R Dandekar and E.J. Rapacki, U.S. Army Research Laboratory

Dynamic Indentation Damage of Ceramics 261
Do Kyung Kim, Chul-Seung Lee, andYoung-Gu Kim, Korea Advanced Institute of Science and Technology; Chang Wook Kim and Soon Nam Chang, Agency for Defense Development

Taylor-Impact Experiments for Brittle Ceramic Materials 269
L. C. Chhabildas and W. D. Reinhart, Sandia National Laboratories; D. R Dandekar U.S. Army Research Laboratory

ANALYTICAL AND COMPUTATIONAL MODELING

Historical Perspective on Ceramic Materials Damage Models 281
A.M. Rajendran, U.S. Army Research Laboratory

A Comparison of Ceramic Material Models 299
Douglas W.Templeton, U. S. Army Tank Automotive Research, Development, and Engineering Center.Timothy J. Holmquist, Network Computing Services Inc./Army HPC Research Center, Hubert W. Meyer Jr, David J. Grove, and Brian Leavy, U.S. Army Research Laboratory

Modeling Ceramic Dwell and Interface Defeat 309
Timothy J. Holmquist and Gordon R. Johnson, Network CS/Army High Performance Computing Research Center

3D Finite Element Analysis of Impact Damage in Metallic and Ceramic Targets 317
Fenghua Zhou and jean-Francois Molinari, Johns Hopkins University

A Numerical Investigation of Microcracking Diffusion in Sandwiched Glass Plates 329
Z. Chen and L Shen, University of Missouri-Columbia; G.I. Kanel and S.V. Razorenov, Russian Academy of Sciences

Analytic Model for Penetration of Thick Ceramic Targets 337
James D.Walker; Southwest Research Institute

Grain Level Analysis of Ceramic Microstructures Subjected to Impact Loading 349
Pablo D. Zavattieri and Horacio D. Espinosa, Northwestern University

Analysis and Modeling of Ceramic Armor Penetration 361
S.J. Cimpoeru and R.L Woodward, DSTO Aeronautical and Maritime Research Laboratory

Overview of the Rajendran-Grove Ceramic Failure Model 371
D. J. Grove and A. M. Rajendran, U. S.Army Research Laboratory

DAMAGE EVOLUTION AND MICROMECHANISMS

Failure Phenomenology of Confined Ceramic Targets and Impacting Rods 385
Donald A. Shockey and A.H. Marchand, SRI International; S.R. Skaggs, G.E. Cort, M.W. Burkett, and R. Parken Los Alamos National Laboratory

Micro-Mechanisms of Compression Failure 403
Sia Nemat-Nasser and Sai Sarva, University of California, San Diego

Damage Mitigation in Ceramics: Historical Developments and Future Directions in Army Research 421
D.M. Stepp, U.S. Army Research Office

Indentation Damage Behavior of Armor Ceramics 429
Do Kyung Kim and Chul-Seung Lee, Korea Advanced Institute of Science and Technology; Chang Wook Kim and Soon Nam Chang, Agency for Defense Development

Progress in the 3-D Visualization of Interior Ballistic Damage in Armor Ceramics 441
Joseph M.Weils, Nevin L Rupert, and William H. Green, U.S.Army Research Laboratory

PROCESSING AND MANUFACTURING

An Assessment of Low Cost Manufacturing Technology for Advanced Structural Ceramics and Its Impact on Ceramic Armor 451
Richard E.Tressler, The Pennsylvania State University

High-Purity Submicron a-Al2O3 Armor Ceramics Design, Manufacture, and Ballistic Performance 463
Andreas Krell, Fraunhofer Institut fur Keramische Technologien und Sinterwerkstoffe (IKTS); Elmar Strassburger; Fraunhofer Institut für Kurzzeitdynamik (EMI)

Solid Freeform Fabrication of Advanced Armor Concepts: Opportunities for Design and Manufacture 473
RC. McCuiston, S.C. Danforth, M.J. Matthewson, and D.E. Niesz, Rutgers, The State University of New Jersey

ULTRA-LIGHTWEIGHT AND NOVEL CONCEPTS

Developing an Ultra-Lightweight Armor Concept 485
Charles E. Anderson Jr, Southwest Research Institute

Ceramics That Exhibit a Threshold Strength 499
F. F. Lange, M.R Rao, K. Hbaieb, and R.M. McMeeking, University of California at Santa Barbara

Novel Ideas in Multi-Functional Ceramic Armor Design 511
Sia Nemat-Nasser, Sai Sarva, Jon B. Isaacs, and David W. Lischer; University of California, San Diego

A New Family of Reaction Bonded Ceramics for Armor Applications 527
M. K. Aghajanian, B. N. Morgan, J. R. Singh, M Cubed Technologies, Inc.; J. Mears and R. A.Wolffe, Simula Safety Systems, Inc.

Flexible Ceramic Coated Fiber Fabrics for Lightweight Protection Systems 541
Konstantin von Niessen and Rainer Gadow, University of Stuttgart

Improved Performance of Alumina Ceramics with Carbon Nanotube Reinforcement 551
Michael Sennett, Natick Soldier Center, Sekyung Chang, Robert H. Doremus, Richard W Siegel, Pulickel M. Ajayan, and Linda S. Schadlen Rensselaer Polytechnic Institute

Recent Progress on the Influence of Microstructure and Mechanical Properties on Ballistic Performance 557
J.C. LaSalvia, U.S. Army Research Laboratory

Transparent Armor

Transparent Armor Materials: Needs and Requirements 573
Parimal J. Patel and Gary A. Gilde, U.S. Army Research Laboratory

Microwave Reactive Sintering to Fully Transparent Aluminum Oxynitride (AION) Ceramics 587
Dinesh Agrawal, Jiping Cheng, and Rustum Roy, The Pennsylvania State University

An Investigation of the Transmission Properties and Ballistic Performance of Hot Pressed Spinel 595
Mark C.L. Patterson, Technology Assessment& Transfer Inc.; Don W Roy, Independent; and Gary Gilde, U.S. Army Research Laboratory

Microstructure and Macrostructure Effects

The Effect of Microstructure on the Dynamic Behavior of Composite Alumina/Titanium Diboride 611
Kathryn V Logan, Georgia Institute of Technology

Phase Equilibrium Studies in Al2O3-TiB2 623
Isabel K. Lloyd, University of Maryland; Kevin J. Doherty and Gary A. Gilde, U.S. Army Research Laboratory

Microstructure Development of Aluminum Oxide/Titanium Diboride Composites for Penetration Resistance 629
J.W.Adams, G.A. Gilde, and M. Burkins, U.S. Army Research Laboratory; L. Prokurat Franks, U.S. Army Tank-Automotive and Armaments Command

The Effect of Metal-Ceramic Bonding on Ballistic Impact 635
Kevin J. Doherty, U.S. Army Research Laboratory

Aspects of Geometry Affecting the Ballistic Performance of Ceramic Targets 643
I. M. Pickup, A. K. Barker R Chenari, and B.J.James, Defense Science and Technology Laboratories; V. Hohler; K.Weber and R. Tham, Faunhofer-lnstitut fur Kurzzeitdynamik (EMI)

Index 651

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.