Preface xi
Glossary xix
Chapter 1. Fracture Mechanisms by Fatigue 1
1.1. Introduction 1
1.2. Principal physical mechanisms of cracking by fatigue 2
1.2.1. Fracture mechanics 2
1.2.2. Criteria of fracture (plasticity) in mechanics 4
1.3. Modes of fracture 7
1.3.1. Directed works 11
1.4. Fatigue of metals: analytical expressions used in reliability 13
1.4.1. Wöhlers law 14
1.4.2. Basquins law (1910) 15
1.4.3. Stromayers law (1914) 16
1.4.4. Palmgrens law 16
1.4.5. Corsons law (1949) 17
1.4.6. Bastenaires law 17
1.4.7. Weibulls law 18
1.4.8. Henrys law 18
1.4.9. Corten and Dolens law 19
1.4.10. MansonCoffins law 20
1.5. Reliability models commonly used in fracture mechanics by fatigue 22
1.5.1. CoffinMansons model for the analysis of crack propagation 24
1.5.2. Neubers relation (1958) 25
1.5.3. Arrhenius model 28
1.5.4. Miners law (1954) 29
1.6. Main common laws retained by fracture mechanics 31
1.6.1. Fost and Dugdales law 33
1.6.2. McEvilys law (1979) 34
1.6.3. Pariss law 35
1.6.4. G.R. Sihs law 39
1.7. Stress intensity factors in fracture mechanics 40
1.7.1. Maddoxs model 40
1.7.2. Gross and Srawleys model 41
1.7.3. Lawrences model 41
1.7.4. Martin and Bousseaus model 42
1.7.5. Gurneys model 43
1.7.6. Engesviks model 43
1.7.7. Yamada and Albrechts model 44
1.7.8. Tomkins and Scotts model 45
1.7.9. Harrisons model 46
1.8. Intrinsic parameters of the material (C and m) 46
1.9. Fracture mechanics elements used in reliability 48
1.10. Crack rate (life expectancy) and s.i.f. (K) 51
1.10.1. Simplified version of Taylors law for machining 54
1.11. Elements of stress (S) and resistance theory (R) 55
1.11.1. Case study, part 2 suspension bridge (Cirta) 55
1.11.2. Case study: failure surface of geotechnical materials 57
1.12. Conclusion 65
1.13. Bibliography 65
Chapter 2. Analysis Elements for Determining the Probability of Rupture by Simple Bounds 69
2.1. Introduction 69
2.1.1. First-order bounds or simple bounds: systems in series 70
2.1.2. First-order bounds or simple bounds: systems in parallel 70
2.2. Second-order bounds or Ditlevsens bounds 70
2.2.1. Evaluating the probability of the intersection of two events 71
2.2.2. Estimating multinomial distributionnormal distribution 74
2.2.3. Binomial distribution 74
2.2.4. Approximation of ô2 (for m 3) 76
2.3. Hohenbichlers method 78
2.4. Hypothesis test, through the example of a normal average with unknown variance 80
2.4.1. Development and calculations 82
2.5. Confidence interval for estimating a normal mean: unknown variance 84
2.6. Conclusion 85
2.7. Bibliography 85
Chapter 3. Analysis of the Reliability of Materials and Structures by the Bayesian Approach 87
3.1. Introduction to the Bayesian method used to evaluate reliability 87
3.2. Posterior distribution and conjugate models 88
3.2.1. Independent events 91
3.2.2. Counting diagram 95
3.3. Conditional probability or Bayes law 99
3.4. Anterior and posterior distributions 103
3.5. Reliability analysis by moments methods, FORM/SORM 106
3.6. Control margins from the results of fracture mechanics 107
3.7. Bayesian model by exponential gamma distribution 110
3.8. Homogeneous Poisson process and rate of occurrence of failure 112
3.9. Estimating the maximum likelihood 113
3.9.1. Type I censored exponential model 113
3.9.2. Estimating the MTBF (or rate of repair/rate of failure) 113
3.9.3. MTBF and confidence interval 114
3.10. Repair rate or ROCOF 117
3.10.1. Power law: non-homogeneous Poisson process 118
3.10.2. Distribution law gamma (reminder) 119
3.10.3. Bayesian model of a priori gamma distribution 122
3.10.4. Distribution tests for exponential life (or HPP model) 124
3.10.5. Bayesian procedure for the exponential system model 126
3.11. Bayesian case study applied in fracture mechanics 131
3.12. Conclusion 137
3.13. Bibliography 138
Chapter 4. Elements of Analysis for the Reliability of Components by Markov Chains 141
4.1. Introduction 141
4.2. Applying Markov chains to a fatigue model 142
4.3. Case study with the help of Markov chains for a fatigue model 145
4.3.1. Position of the problem 146
4.3.2. Discussion 149
4.3.3. Explanatory information 149
4.3.4. Directed works 154
4.3.5. Approach for solving the problem 155
4.3.6. Which solution should we choose? 156
4.4. Conclusion 157
4.5. Bibliography 157
Chapter 5. Reliability Indices 159
5.1. Introduction 159
5.2. Design of material and structure reliability 161
5.2.1. Reliability of materials and structures 162
5.3. First-order reliability method 165
5.4. Second-order reliability method 165
5.5. Cornells reliability index 166
5.6. HasoferLinds reliability index 168
5.7. Reliability of material and structure components 171
5.8. Reliability of systems in parallels and series 172
5.8.1. Parallel system 172
5.8.2. Parallel system (m/n) 173
5.8.3. Serial assembly system 173
5.9. Conclusion 179
5.10. Bibliography 179
Chapter 6. Fracture Criteria Reliability Methods through an Integral Damage Indicator 181
6.1. Introduction 181
6.2. Literature review of the integral damage indicator method 185
6.2.1. Brief recap of the FORM/SORM method 186
6.2.2. Recap of the HasoferLind index method 187
6.3. Literature review of the probabilistic approach of cracking law parameters in region II of the Paris law 188
6.4. Crack spreading by a classical fatigue model 190
6.5. Reliability calculations using the integral damage indicator method 197
6.6. Conclusion 199
6.7. Bibliography 201
Chapter 7. Monte Carlo Simulation 205
7.1. Introduction 205
7.1.1. From the origin of the Monte Carlo method! 205
7.1.2. The terminology 206
7.2. Simulation of a singular variable of a Gaussian 209
7.2.1. Simulation of non-Gaussian variable 210
7.2.2. Simulation of correlated variables 210
7.2.3. Simulation of correlated Gaussian variables 210
7.2.4. Simulation of correlated non-Gaussian variables 210
7.3. Determining safety indices using Monte Carlo simulation 212
7.3.1. General tools and problem outline 212
7.3.2. Presentation and discussion of our experimental results 214
7.3.3. Use of the randomly selected numbers table 215
7.4. Applied mathematical techniques to generate random numbers by MC simulation on four principle statistical laws 220
7.4.1. Uniform law 220
7.4.2. LaplaceGauss (normal) law 221
7.4.3. Exponential law 222
7.4.4. Initial value control 222
7.5. Conclusion 231
7.6. Bibliography 232
Chapter 8. Case Studies 235
8.1. Introduction 235
8.2. Reliability indicators () and MTBF 235
8.2.1. Model of parallel assembly 235
8.2.2. Model of serial assembly 236
8.3. Parallel or redundant model 237
8.4. Reliability and structural redundancy: systems without distribution 239
8.4.1. Serial model 239
8.5. Rate of constant failure 240
8.5.1. Reliability of systems without repairing: parallel model 243
8.6. Reliability applications in cases of redundant systems 248
8.6.1. Total active redundancy 252
8.6.2. Partial active redundancy 253
8.7. Reliability and availability of repairable systems 258
8.8. Quality assurance in reliability 264
8.8.1. Projected analysis of reliability 264
8.9. BirnbaumSaunders distribution in crack spreading 268
8.9.1. Probability density and distribution function (BirnbaumSaunders cumulative distribution through cracking) 269
8.9.2. Graph plots for the four probability density functions and distribution functions 270
8.10. Reliability calculation for ages () in hours of service, Ri() = ? 270
8.11. Simulation methods in mechanical reliability of structures and materials: the Monte Carlo simulation method 275
8.11.1. Weibull law 277
8.11.2. Log-normal Law (of Galton) 278
8.11.3. Exponential law 278
8.11.4. Generation of random numbers 279
8.12. Elements of safety via the couple: resistance and stress (R, S) 284
8.13. Reliability trials 286
8.13.1. Controlling risks and efficiency in mechanical reliability 288
8.13.2. Truncated trials 291
8.13.3. Censored trials 292
8.13.4. Trial plan 293
8.13.5. Coefficients for the trials acceptance plan 296
8.13.6. Trials rejection plan (in the same conditions) 297
8.13.7. Trial plan in reliability and K Pearson test 2 299
8.14. Reliability application on speed reducers (gears) 300
8.14.1. Applied example on hydraulic motors 303
8.15. Reliability case study in columns under stress of buckling 305
8.15.1. RDM solution 307
8.15.2. Problem outline and probabilistic solution (reliability and error) 309
8.16. Adjustment of least squared for nonlinear functions 311
8.16.1. Specific case study 1: a Weibull law with two parameters 311
8.17. Conclusion 314
8.18. Bibliography 314
Appendix 317
Index 333