Preface xvii
1 Flame Retarded Cotton Fabrics: Current Achievements, Open Challenges, and Future Perspectives 1
Giulio Malucelli
1.1 Introduction 2
1.2 Textile Finishing with SolGel Treatments 8
1.2.1 Fully Inorganic Systems 10
1.2.2 Phosphorus-Doped SolGel Coatings 13
1.2.3 Hybrid OrganicInorganic SolGel Coatings 14
1.3 Textile Finishing with Layer-by-Layer Assemblies 17
1.3.1 Fully Inorganic LbL Assemblies on Cotton 18
1.3.2 Intumescent LbL Assemblies on Cotton 19
1.3.3 Hybrid LbL Assemblies on Cotton 23
1.4 Current Limitations of SolGel and Layer-by-Layer Treatments 25
1.5 Conclusions and Future Perspectives 26
Acknowledgments 27
References 27
2 UV Protective Clothing 33
Anu Mishra and Bhupendra Singh Butola
2.1 Introduction 33
2.2 Harmful Effects of UV Radiations on Skin 34
2.2.1 Short-Term Effects 37
2.2.2 Long-Term Effects 38
2.3 Environmental Factors Influencing UV Level on Earth 39
2.3.1 Effect of Ozone Layer Depletion 40
2.3.2 Solar Elevation (Height of the Sun in the Sky) 40
2.3.3 Latitude and Altitude 40
2.3.4 Cloud Cover and Haze 41
2.3.5 Ground Reflection 41
2.4 Effect of Physical and Chemical Characteristics of Textile Materials on UV Protection 42
2.4.1 Effect of Physical Parameters 43
2.4.1.1 Yarn Structural Parameters 43
2.4.1.2 Fabric Structural Parameters 43
2.4.2 Effect of Chemical Parameters 44
2.4.2.1 Effect of Fiber Chemistry 44
2.4.2.2 Effect of Chemical Processing (Bleaching, Dyeing, and Other Finishing Chemicals) 45
2.5 Type of UV Finishes, Their Working Mechanism, and Limitations 46
2.5.1 Organic UV Absorbers 46
2.5.2 Inorganic UV Blockers 49
2.6 Application Methods of UV Finish in Textiles 50
2.7 Test Methods for Quantitative Assessment of UV Protection of Textiles 54
2.7.1In Vitro56
2.7.2In Vivo57
2.8 Summary 57
References 58
3 Potential of Textile Structure Reinforced Composites for Automotive Applications 65
Vikas Khatkar, R. N. Manjunath, Sandeep Olhan and B. K. Behera
3.1 Introduction 66
3.2 Materials for Automotive 68
3.2.1 Metallic Materials in Automotive 68
3.2.1.1 Steel 68
3.2.1.2 Aluminum 68
3.2.1.3 Magnesium 69
3.2.2 Composite Materials for Automotives 70
3.2.2.1 Natural Fiber Reinforcement Polymer Composites 71
3.2.2.2 Advance Fiber-Based Composite 73
3.2.3 Advantage of Composite Over Conventional Materials 75
3.2.3.1 Lightweight 75
3.2.3.2 Crashworthiness 78
3.2.3.3 Joining 79
3.2.3.4 Recycling 79
3.3 Textile Materials for Automotive 80
3.3.1 Textile Structural Composites for Automotive 82
3.3.1.1 3D Fabrics as New Solutions for Transportation Applications 84
3.4 Potential Automotive Parts to be Replaced with Textile Structural Composites 85
3.4.1 Automotive Interiors 85
3.4.2 Exterior Body Panels 87
3.4.2.1 Car Hoods (Bonnet) 87
3.4.2.2 Bumpers 88
3.4.2.3 Door Panels 90
3.4.3 Structural Components 90
3.4.3.1 Leaf Spring 91
3.5 Lightweight Solution for Electric Car 93
3.6 Conclusion 93
References 94
4 Biotechnology Applications in Textiles 99
Lalit Jajpura
4.1 Introduction 100
4.2 Adverse Effects of Industrial Farm Practices in Cotton Cultivation 101
4.2.1 Adverse Effect of Synthetic Fertilizers 101
4.2.2 Adverse Effect of Synthetic Pesticides 102
4.2.3 Adverse Effect of Excessive Irrigation 103
4.3 Application of Biotechnology in Cotton Cultivation 103
4.3.1 Gene Construction and Transformation 104
4.3.2 Bt Cotton 105
4.4 Wet Processing of Cotton and Its Environmental Impact 105
4.5 Enzyme and Its Properties 106
4.6 Classification of Enzymes 107
4.7 Enzymatic Bioprocessing of Cotton 108
4.7.1 Desizing 108
4.7.2 Enzymatic Desizing 109
4.7.2.1 Amylase (E.C. 3.2.1.1) 109
4.7.2.2 Lipase (EC 3.1.1.3) 109
4.7.3 Scouring 110
4.7.4 Enzymatic Scouring 110
4.7.4.1 Pectinase (EC 3.2.1.15) 110
4.7.4.2 Lipase (EC 3.1.1.3) 111
4.7.4.3 Cellulase (EC 3.2.1.4) 111
4.7.4.4 Cutinase (EC 3.1.1.74) 111
4.7.4.5 Xylanase (EC 3.2.1.8) 112
4.7.5 Enzymatic Bleaching 112
4.7.5.1 Laccase (E.C. 1.10.3.2) 113
4.8 Enzymatic Hydrogen Peroxide Removal by Catalase 113
4.8.1 Catalase (E.C. 1.11.1.6) 114
4.9 Biopolishing of Cotton 114
4.10 Enzymatic Fading of Denim 114
4.11 Application of Biotechnology in Wool Production and its Wet Processing 115
4.12 Enzymatic Bioprocessing of Wool 115
4.12.1 Enzymatic Carbonization of Wool 115
4.12.2 Enzymatic Scouring of Wool 116
4.12.2.1 Protease (EC 3.4.21.112) 116
4.12.3 Enzymatic Finishing of Wool 116
4.13 Application of Biotechnology in Sericulture and Wet Processing of Silk 117
4.14 Enzymatic Bioprocessing of Silk 117
4.15 Application of Biotechnology in Sustainable Finishing 118
4.16 Application of Enzyme Immobilization Techniques in Reuse of Enzymes 119
4.17 Conclusion 119
References 120
5 Environmental Issues in Textiles 129
Rishabh Kumar Saran, Raj Kumar and Shashikant Yadav
5.1 Introduction 130
5.2 Textile Fiber 130
5.3 Processes in the Textile Industry 131
5.4 Key Environmental Issues 134
5.4.1 Supply Water 134
5.4.2 Chlorinated Solvents 137
5.4.3 Hydrocarbon SolventsAliphatic Hydrocarbons 137
5.4.4 Hydrocarbon SolventsAromatic Hydrocarbons 138
5.4.5 Oxygenated Solvents (Alcohols/Glycols/Ethers/Esters/Ketones/Aldehydes) 138
5.4.6 Grease and Oil Impregnated Wastes 139
5.4.7 Used Oils 139
5.4.8 Dyestuffs and Pigments Containing Dangerous Substances 140
5.4.9 Heat and Energy Generation From Textile Industry Waste 140
5.4.10 Carbon Footprint of a Textile Product 143
5.5 Environmental Impact of Textile Industry Wastewater 144
5.6 Environmental Legislation 146
References 146
6 Water Saving Technologies for Textile Chemical Processing 153
Nagender Singh
6.1 Introduction 154
6.1.1 Indian Textile Industry 155
6.1.2 Water Consumption in Textile Processing 157
6.2 Technologies for Water Saving in Textile Chemical Processing 158
6.2.1 Process Optimization Techniques 158
6.2.2 Emerging Water-Saving Wet Processing Technologies 160
6.2.3 Low Liquor Technologies 165
6.3 Conclusion 166
References 167
7 Photocatalytic Dye Degradation Using Modified Titania 171
Waseem Raza and Mohd Faraz
7.1 Introduction 172
7.1.1 Discovery of Photocatalysis: A Short Historical Overview 174
7.1.2 Photocatalytic Mechanism 175
7.1.3 Mechanism Under Visible Light Irradiation 176
7.1.4 Direct Mechanism for Dye Degradation 178
7.1.5 Our Research Focus 179
7.2 Photocatalytic Application 180
7.2.1 Degradation of Methylene Blue Using Fe-Doped TiO2 180
7.2.2 Degradation of Acid Yellow 29 Using La and Mo-Doped TiO2 Carbon Sphere (CS) 181
7.2.3 Degradation of Coomassie Brilliant Blue G250 Using La and Mo-Doped TiO2 Carbon Sphere 182
7.2.4 Degradation of Acid Green 25 Using La and Mo-Doped TiO2 Carbon Sphere 184
7.2.5 Degradation of Acid Yellow 29 Using Ce and Mn-Doped TiO2 Carbon Sphere 185
7.2.6 Degradation of Acid Green 25 Using Ce and Mn-Doped TiO2 Carbon Sphere 186
7.2.7 Degradation of Barbituric Acid and Matrinidazole in Using Undoped and Ni-Doped TiO2 188
7.3 Factors Affecting the Degradation of Organic Pollutants 190
7.3.1 Effect of pH 190
7.3.2 Effect of Photocatalyst Loading 191
7.3.3 Effect of Calcination Temperature 192
7.3.4 Effect of Reaction Temperature 193
7.3.5 Effect of Inorganic Ions 193
7.4 Conclusions 195
References 195
8 Advanced Approaches for Remediation of Textile Wastewater: A Comparative Study 201
Shumaila Kiran, Sofia Nosheen, Shazia Abrar, Fozia Anjum, Tahsin Gulzar and Saba Naz
8.1 Introduction 202
8.1.1 Textile Wastewater 202
8.1.2 Characteristics of Textile Wastewater 202
8.1.3 Damages Caused by Textile Effluent 202
8.1.4 Ecological Balance and Environmental Issue 204
8.1.5 Need for the Treatment 204
8.1.6 Standards of Textile Industry for Water Contaminants 206
8.2 Treatment Methods for Textile Effluent 207
8.2.1 Dealings to Control Water Contamination 207
8.2.2 Physical Methods 208
8.2.2.1 Screening 208
8.2.2.2 CoagulationFlocculation Treatments 209
8.2.2.3 Sedimentation 210
8.2.2.4 Equalization or Homogenization 211
8.2.2.5 Floatation 211
8.2.2.6 Adsorption 212
8.2.2.7 Membrane Processes 214
8.2.3 Chemical Methods 219
8.2.3.1 Chemical Precipitation 219
8.2.3.2 Neutralization 220
8.2.3.3 Electro Chemical Process 220
8.2.3.4 Oxidation Methods 221
8.2.3.5 Ion Exchange Process 226
8.2.4 Biological Methods 229
8.2.4.1 Efficiency of Biological Methods 232
8.2.4.2 Bacterial Decolorization of Dyes 232
8.2.4.3 Dye Degradation by Fungal Cultures 234
8.2.4.4 Algae for Degradation of Dyes 236
8.2.4.5 Microbial Fuel Cell 238
8.3 Sequential Method for Textile Effluent Treatment 240
8.3.1 Levels of Textile Effluent Treatments 241
8.3.1.1 Preliminary Treatment 241
8.3.1.2 Primary Treatment 242
8.3.1.3 Secondary Treatment 243
8.3.1.4 Tertiary Treatment 245
8.4 Conclusion 247
References 247
9 Polymer-Supported Nanocomposite-Based Nanomaterials for Removal and Recovery of Pollutants and Their Application in Bio-Electrochemical System 265
Abdul Hakeem Anwer, Nishat Khan, Mohammad Shahadat, Mohammad Zain Khan, Ziauddin Ahammad Shaikh and Syed Wazed Ali
9.1 Introduction 266
9.1.1 Reason for Selection of Polyaniline-Based Nanocomposite Material 268
9.1.2 Synthesis of PANI Based Nanocomposite 269
9.1.2.1 SolGel Methode 274
9.1.2.2 Hydrothermal Method 274
9.1.2.3 Chemical Reduction Method 274
9.1.2.4 ChemicalIn SituPolymerization Method 275
9.1.3 Treatment of Wastewater Using Bioelectrochemical System 275
9.1.3.1 Microbial Fuel Cell 276
9.1.3.2 MEC System 279
9.1.3.3 Electrode Material 279
9.1.4 Polyaniline-Supported Electrodic Material for MFC/MEC 281
9.2 Conclusion 282
Acknowledgments 283
References 283
10 Reactive and Functional Polymers 291
Tanvir Arfin
10.1 Introduction 291
10.2 Types of Textiles 293
10.3 Location of Textile Industries in India 293
10.4 Role of Polymer 294
10.4.1 Chitosan 294
10.4.2 Starch 295
10.4.3 Gelatin 296
10.4.4 Cellulose 297
10.4.5 Protein 298
10.4.6 MWCNT 298
10.4.7 Dendrimer 299
10.4.8 Polystyrene 299
10.4.9 Nylon-6,6 300
10.4.10 Polyaniline 300
10.4.11 Polyvinyl Alcohol 301
10.5 Conclusion 301
References 302
11 Fabrication and Biomedical Applications of Polyvinyl-Alcohol-Based Nanocomposites with Special Emphasis on the Anti-Bacterial Applications of Metal/Metal Oxide Polymer Nanocomposites 309
Shahnawaz Ahmad Bhat, Fahmina Zafar, Azar Ullah Mirza, Abdulrahman Mohammad, Paramjit Singh and Nahid Nishat
11.1 Introduction 310
11.2 Scope of the Chapter 312
11.3 Metal/Metal Oxide Nanoparticles 313
11.3.1 Preparation of Metal Oxide Nanoparticles 314
11.3.1.1 Co-Precipitation Method 314
11.3.1.2 Hydrothermal Technique 314
11.3.1.3 Micro-Emulsion Method 315
11.3.1.4 SolGel Method 315
11.4 Nanocomposite 316
11.4.1 Preparation of Nanocomposite 318
11.4.1.1Ex SituMethod 318
11.4.1.2In SituMethod 318
11.5 Biomedical Applications of Nanocomposite 319
11.5.1 Anticancer Application 320
11.5.2 Antibacterial Application 320
11.6 Conclusions 325
Acknowledgments 326
References 326
12 Preparation, Classification, and Applications of Smart Hydrogels 337
Ali Akbar Merati, Nahid Hemmatinejad, Mina Shakeri and Azadeh Bashari
12.1 Introduction 337
12.2 Preparation and Characterization of Smart Hydrogels 339
12.2.1 Preparation of Smart Hydrogels 339
12.2.2 Characterization of Smart Hydrogels 341
12.3 Classifications of Smart Hydrogels 344
12.3.1 Physical Stimuli-Responsive Hydrogels 345
12.3.2 Chemical Stimuli-Responsive Hydrogels 346
12.3.3 Biochemical Stimuli-Responsive Hydrogels 347
12.4 Applications of Smart Hydrogels 348
12.4.1 Drug Delivery Systems 349
12.4.2 Injectable Hydrogels 350
12.4.3 Tissue Engineering 351
12.4.4 Smart Hydrogels as Actuators 351
12.4.5 Sensors 351
12.4.6 Self-Healing 352
12.5 Smart Hydrogel-Functionalized Textile Systems 353
12.6 Electrospinning of Smart Hydrogels 355
12.7 Future Trends of Smart Hydrogels 356
12.8 Conclusions 357
References 357
13 Potential Applications of Chitosan Nanocomposites: Recent Trends and Challenges 365
Tara Chand Yadav, Pallavi Saxena, Amit Kumar Srivastava, Amit Kumar Singh, Ravi Kumar Yadav, Harish, R. Prasad and Vikas Pruthi
13.1 Introduction 366
13.2 Synthetic Routes for the Preparation of Nanocomposites of Chitosan 368
13.2.1 General Synthetic Routes 368
13.2.2 Physical Methods 369
13.2.2.1 Photochemical Methods (UV, Near-IR), Radiolysis, and Sonochemistry 370
13.2.3 Chemical Method 370
13.2.3.1 Borohydride Reduction 371
13.2.3.2 Citrate Reduction 372
13.2.4 Seeding-Growth Method 372
13.2.5 Biosynthesis Methods 372
13.3 Applications of Chitosan Nanocomposites 373
13.3.1 Chitosan Treatment of Textiles 373
13.3.1.1 Wool 374
13.3.1.2 Silk 375
13.3.1.3 Cotton 376
13.3.2 Textile Functionalities Achieved 376
13.3.2.1 Antimicrobial and Enriched Dyeing Properties 376
13.3.2.2 Wrinkle Proof Resistance 378
13.3.3 Effluent Treatment Applications 378
13.3.4 Bioremediation 379
13.4 Biomedical Application 380
13.4.1 Drug Delivery 380
13.4.2 Wound Healing 381
13.4.2.1 Scaffolds Ingrained with Chitosan/Natural/Synthetic Graft for Wound Healing 381
13.4.2.2 Composite Chitosan Graft Scaffoldings for Wound Healing 382
13.4.2.3 ChitosanOil Ingrained Grafts for Wound Healing 384
13.4.2.4 Plant Extract Ingrained Chitosan Film Scaffoldings for Wound Healing 384
13.4.2.5 Modified Chitosan Products for Wound Healing 385
13.4.2.6 Toxicological Assessment of Tri-Methyl Chitosan 385
13.4.2.7 Effect of Trimethyl Chitosan in Wound Healing 385
13.4.2.8 Impact of Carboxymethyl Chitosan and Carboxymethyl-Trimethyl Chitosan 386
13.4.2.9 Peptides Conjugates-Chitosan/Derivatives for Wound Healing 386
13.4.2.10 Commercial Dressing Bandages of Chitosan Blend 387
13.5 Future Prospects 388
References 389
14 Use of Polymer Nanocomposites in Asphalt Binder Modification405
Saqib Gulzar and Shane Underwood
14.1 Introduction 405
14.2 Background 407
14.2.1 Asphalt Binders 408
14.2.2 Asphalt Modification 411
14.2.3 Comparative Analysis 413
14.3 Polymer Nanocomposites 415
14.3.1 Polymers and Nanomaterials 415
14.3.2 Polymer Nanocomposites (PNC) 416
14.3.2.1 PNC Blended Systems 417
14.3.2.2 PNC Integrated Systems 417
14.4 Rheological Impacts 418
14.4.1 Measures for Polymer Modified and Nano Modified Asphalt Binder Systems 418
14.4.2 Measures with PNC Modified Asphalt 421
14.5 Suggested Evaluation Method for PNC Modified Asphalt Binders 427
14.6 Summary 428
References 428
Index 433