Beschreibung
This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The main attention is paid to fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work is focused on algorithms of multiplication, inversion and description of eigenstructure and includes a large number of illustrative examples throughout the different chapters. The first volume consists of four parts. The first part is of a mainly theoretical character introducing and studying the quasiseparable and semiseparable representations of matrices and minimal rank completion problems. Three further completions are treated in the second part. The first applications of the quasiseparable and semiseparable structure are included in the third part where the interplay between the quasiseparable structure and discrete time varying linear systems with boundary conditions play an essential role. The fourth part contains factorization and inversion fast algorithms for matrices via quasiseparable and semiseparable structure. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and the accessible style the text will be useful to engineers, scientists, numerical analysts, computer scientists and mathematicians alike.
Inhalt
Part 1. Basics on separable, semiseparable and quasiseparable representations of matrices.- 1. Matrices with separable representation and low complexity algorithms.- 2. The minimal rank completion problem.- 3. Matrices in diagonal plus semiseparable form.- 4. Quasiseparable representations: the basics.- 5. Quasiseparable generators.- 6. Rank numbers of pairs of mutually inverse matrices, Asplund theorems.- 7. Unitary matrices with quasiseparable representations.- Part 2. Completion of matrices with specified bands.- 8. Completion to Green matrices.- 9. Completion to matrices with band inverses and with minimal ranks.- 10. Completion of special types of matrices.- 11. Completion of mutually inverse matrices.- 12. Completion to unitary matrices.- Part 3. Quasiseparable representations of matrices, descriptor systems with boundary conditions and first applications.- 13. Quasiseparable representations and descriptor systems with boundary conditions.- 14. The first inversion algorithms.- 15. Inversion of matrices in diagonal plus semiseparable form.- 16. Quasiseparable/semiseparable representations and one-direction systems.- 17. Multiplication of matrices.- Part 4. Factorization and inversion.- 18. The LDU factorization and inversion.- 19. Scalar matrices with quasiseparable order one.- 20. The QR factorization based method.
Informationen zu E-Books
Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.
Adobe-ID
Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig.
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
Lesen auf dem Tablet oder Handy
Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App.
Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire
Lesen auf einem E-Book-Reader oder am PC / MAC
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
Andere Geräte / Software
Kindle von Amazon. Wir empfehlen diese Geräte NICHT.
EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.
Software für Sony-E-Book-Reader
Computer/Laptop mit Unix oder Linux
Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.