Estimation and Testing Under Sparsity

École d'Été de Probabilités de Saint-Flour XLV - 2015, Lecture Notes in Mathematics 2159 - École d'Été de Probabilités de Saint-Flour

58,84 €
(inkl. MwSt.)
In den Warenkorb

Lieferbar innerhalb 1 - 2 Wochen

Bibliografische Daten
ISBN/EAN: 9783319327730
Sprache: Englisch
Umfang: xiii, 274 S.
Auflage: 1. Auflage 2016
Einband: kartoniertes Buch

Beschreibung

Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.

Informationen gemäß Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg