Robust Representation for Data Analytics

Models and Applications, Advanced Information and Knowledge Processing

128,39 €
(inkl. MwSt.)
In den Warenkorb

Lieferbar innerhalb 1 - 2 Wochen

Bibliografische Daten
ISBN/EAN: 9783319601755
Sprache: Englisch
Umfang: xi, 224 S., 3 s/w Illustr., 49 farbige Illustr., 2
Auflage: 1. Auflage 2018
Einband: gebundenes Buch

Beschreibung

This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary.Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning.Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Informationen gemäß Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg