Oxidative Cross-Coupling Reactions

eBook

Liu, Wei/Shi, Wei/Zhang, Hua et al
Auch erhältlich als:
129,99 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9783527681006
Sprache: Englisch
Umfang: 240 S., 18.61 MB
Auflage: 1. Auflage 2016
E-Book
Format: EPUB
DRM: Adobe DRM

Beschreibung

The first handbook on this emerging field provides a comprehensive overview of transition metal-catalyzed coupling reactions in the presence of an oxidant. Following an introduction to the general concept and mechanism of this reaction class, the team of authors presents chapters on C-C cross-coupling reactions using organometallic partners, C-Heteroatom bond forming reactions via oxidative couplings, and C-H couplings via C-H activation. The text also covers such groundbreaking topics as recent achievements in the fields of C-C and C-X bond formation reactions as well as C-H activation involving oxidative couplings.
With its novel and concise approach towards important building blocks in organic chemistry and its focus on synthetic applications, this handbook is of great interest to all synthetic chemists in academia and industry alike.

Autorenportrait

Aiwen Lei is a professor of organic chemistry at the College of Chemistry and Molecular Sciences and the executive director of the Institute of Green Catalysis at Wuhan University, China. After obtaining his PhD in 2000 under the supervision of Prof. Xiyan Lu, he went to Pennsylvania State University and then to Stanford University for post-doctoral research. In 2005 he was appointed professor at Wuhan University. Aiwen Lei has received the Chinese Chemistry Society - John Wiley Young Chemist Award (2008), the National Science Fund for Distinguished Young Scholars in China (2010) and the Eli Lilly Scientific Excellence Award in Chemistry in 2011.

Wei Shi is an associate professor at the Huazhong Agricultural University (Wuhan, China) since 2011. He obtained his PhD at Wuhan University under the supervision of Prof. Aiwen Lei. His research interest is focused on the chemistry of alkynes and their derivatives.

Chao Liu is a professor at Lanzhou Institute of Chemical Physics, Chinese Academy of Science, China. He received his PhD in 2012 from the Wuhan University, China, under the supervision of Prof. Aiwen Lei. From October 2008 to October 2009 he was an exchange PhD student at Durham University, UK, in the group of Prof. Todd B. Marder. His research is focused on oxo-synthesis and selective oxidation.

Wei Liu is an associate professor at the College of Food Science and Technology, Henan University of Technology (Zhengzhou, China). He obtained his PhD from the College of Chemistry and Molecular Sciences, Wuhan University, China, in the group of Prof. Aiwen Lei in 2010. His research interest focuses on the green organic synthesis and catalytical biomass transformation.

Hua Zhang is a professor at Nanchang University, China. He obtained his PhD degree under the supervision of Prof. Aiwen Lei at Wuhan University in 2013. After that, he spent two years as a JSPS postdoctoral researcher in Prof. Kenichiro Itami?s lab at Nagoya University, Japan. His current research is focusing on non-noble transition metal catalysis.

Chuan He is a Marie Curie Research Fellow at the Department of Chemistry, University of Cambridge, UK. He obtained his PhD from Wuhan University, Chain, under supervision of Prof. Aiwen Lei in 2013. He then joined Prof. Matthew Gaunt's group as a postdoctoral researcher at the University of Cambridge, UK. His current research focuses on transition-metal-catalyzed C?H bond functionalization.

Inhalt

1 Oxidative Coupling Bonding between Two Nucleophiles 1

1.1 Introduction/General 1

1.1.1 What is Oxidative Cross-Coupling? 1

1.1.2 Why Oxidative Cross-Coupling? 1

1.1.3 How Does Oxidative Cross-CouplingWork? 3

1.1.4 Development and Outlook 4

References 4

2 Organometals as Nucleophiles 7

2.1 Classification and Applications of Organometallic Reagents 7

2.2 CspM and CspM as Nucleophiles 8

2.2.1 AlkyneAlkyne Oxidative Coupling 9

2.2.1.1 Alkynyl-Si 11

2.2.1.2 Alkynyl-Sn 12

2.2.1.3 Alkynyl-B 14

2.2.1.4 Alkynyl-Mg 17

2.2.1.5 Alkynyl-Te 19

2.2.2 AlkyneCyano Oxidative Coupling 22

2.3 CspM and Csp2M as Nucleophiles 22

2.4 CspM and Csp3M as Nucleophiles 28

2.5 Csp2M and Csp2M as Nucleophiles 30

2.5.1 Homocoupling of Csp2M 30

2.5.2 Cross-Coupling between Different Species of Csp2M 32

2.6 Csp2M and Csp3M as Nucleophiles 34

2.7 Csp3M and Csp3M as Nucleophiles 37

2.8 Conclusions 40

Acknowledgments 41

References 42

3 Oxidative Couplings Involving the Cleavage of CH Bonds 45

3.1 Theoretical Understandings and Methods in CH Bond Functionalization 45

3.1.1 Introduction 45

3.1.2 Mechanisms of CH Cleavage by Transition Metals 47

3.1.2.1 Oxidative Addition 49

3.1.2.2 Electrophilic Substitution 49

3.1.2.3 -Bond Metathesis 52

3.1.2.4 Concerted Metalation Deprotonation (CMD) 52

3.1.2.5 1,2-Addition 55

3.1.2.6 Biomimetic CH Oxidation 55

3.1.2.7 Carbenoid/Nitrenoid CH Insertion 56

3.1.3 Methods for Selective CH Bond Functionalization 58

3.1.3.1 Directed CH Functionalization 58

3.1.3.2 Sterically Controlled CH Functionalization 63

3.1.3.3 CH Functionalization via Ionic Intermediates 63

3.1.3.4 CH Functionalization via Radical Intermediates 67

3.2 Oxidative Couplings between Organometals and Hydrocarbons 71

3.2.1 C(sp)H and Organometals as Nucleophiles 71

3.2.2 Csp2H and Organometals as Nucleophiles 73

3.2.3 Csp3H and Organometals as Nucleophiles 93

3.3 Oxidative Couplings between Two Hydrocarbons 95

3.3.1 C(sp)H and C(sp)H as Nucleophiles 95

3.3.2 C(sp)H and C(sp2)H as Nucleophiles 99

3.3.3 C(sp)H and C(sp3)H as Nucleophiles 105

3.3.4 Csp2H and Csp2H as Nucleophiles 106

3.3.4.1 Oxidative Coupling between Directing-Group-Containing Arenes and Unactivated Arenes 107

3.3.4.2 Oxidative Coupling of Arenes without Directing Groups 109

3.3.4.3 Intramolecular Oxidative Coupling of Unactivated Arenes 110

3.3.4.4 Oxidative Heck-Type Cross-Coupling 114

3.3.5 Csp2H and Csp3H as Nucleophiles 123

3.3.5.1 Intramolecular Oxidative Coupling between Aromatic Csp2H and Csp3H 123

3.3.5.2 Intramolecular Oxidative Coupling between Alkene Csp2H and Csp3H 125

3.3.5.3 Intermolecular Oxidative Coupling between Csp2H and Csp3H 127

3.3.6 C(sp3)H and C(sp3)H as Nucleophiles 128

3.4 Conclusions 130

References 130

4 Bonding Including Heteroatoms via Oxidative Coupling 139

4.1 Introduction 139

4.2 Oxidative CO Bond Formation 140

4.2.1 CH and OM as Nucleophiles 140

4.2.2 CH and OH as Nucleophiles 140

4.2.2.1 C(sp2, Aryl)O Bond Formation 140

4.2.2.2 C(sp2, Heteroaryl, Alkenyl)O Bond Formation 144

4.2.2.3 C(sp3, Benzyl)O Bond Formation 145

4.2.2.4 C(sp3, Alkanes with Directing Group)O Bond Formation 145

4.2.2.5 C(sp3, Ethers, Amines, Amides, Alkanes)O Bond Formation 148

4.2.2.6 C(sp3, allyl)O Bond Formation 148

4.3 Oxidative CN Bond Formation 152

4.3.1 C(sp)N Bond Formation 152

4.3.2 C(sp2, Arenes with Directing Group)N Bond Formation 153

4.3.3 C(sp2, Simple Arenes)N Bond Formation 156

4.3.4 C(sp2, Heteroaryl)N Bond Formation 156

4.3.5 C(sp2, Alkenyl)N Bond Formation 159

4.3.6 C(sp3, Alkyl)N Bond Formation 163

4.3.7 C(sp3, Allyl)N Bond Formation 164

4.4 Oxidative CHalo Bond Formation 166

4.4.1 CH and HaloH as Nucleophiles 167

4.4.2 CH and HaloM as Nucleophiles 168

4.5 Oxidative CS Bond Formation 170

4.5.1 C(sp2)S Bond Formation 170

4.5.2 C(sp)S Bond Formation 171

4.6 Oxidative CP Bond Formation 172

4.6.1 C(sp2, Aryl)P Bond Formation 172

4.6.2 C(sp2, Heteroaryl)P Bond Formation 173

4.6.3 C(sp2, Alkenyl)P Bond Formation 176

4.6.4 C(sp)P Bond Formation 176

4.6.5 C(sp3)P Bond Formation 176

4.7 Oxidative CB Bond Formation 177

References 178

5 Oxidative Radical Couplings 185

5.1 Introduction 185

5.2 Oxidative Radical CC Couplings 185

5.2.1 Coupling of Csp3H with CspH Bonds 185

5.2.2 Coupling of Csp3H with Csp2H Bonds 187

5.2.3 Coupling of Csp3H with Csp3H Bonds 200

5.2.4 Coupling of Csp2H with Csp2H Bonds 204

5.3 Oxidative Radical CC Couplings through Cascade Process 208

5.4 Oxidative Radical CC Couplings via CC(N) Bond Cleavage 217

References 222

Index 225

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.