Photo- and Electro-Catalytic Processes

eBook - Water Splitting, N2 Fixing, CO2 Reduction

178,99 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9783527830060
Sprache: Englisch
Umfang: 592 S., 24.47 MB
Auflage: 1. Auflage 2022
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

Explore green catalytic reactions with this reference from a renowned leader in the field

Green reactionslike photo-, photoelectro-, and electro-catalytic reactionsoffer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products.

InPhoto- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts.

Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes:Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactionsComprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reductionPractical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reductionIn-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction

Perfect for catalytic chemists and photochemists,Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.

Autorenportrait

Jianmin Ma is the professor in the University of Electronic Science and Technology of China. He received his B.S. degree in Chemistry from the Shanxi Normal University in 2003 and Ph.D. degree in Materials Physics and Chemistry from Nankai University in 2011. During 20112015, he also conducted the research in several overseas universities as a postdoctoral research associate. He serves as the Academic Editor for Rare Metals, the Associate Editor for Chinese Chemical Letters, Chair and editorial board member for Journal of Energy Chemistry, Nano-Micro Letters, Journal of Physics: Condensed Matter, JPhys Energy, and others. His research interest focuses on energy storage devices and components including metal anodes and electrolytes, and theoretical calculations from Density Functional Theory and Molecular Dynamics to Finite Element Analysis.

Inhalt

Preface xiii

1 Oxygen Reduction Reaction Electrocatalysts 1
Xinwen Peng and Lei Zhang

1.1 Introduction 1

1.2 Pt-Based ORR Electrocatalysts 2

1.2.1 Facet-Controlled Catalysts 2

1.2.2 Multimetallic Nanocrystals 3

1.2.2.1 Pt Alloys 3

1.2.2.2 Supported-Enhanced Catalysts 6

1.3 Transition-Metal-Based Materials 10

1.3.1 Metals and Alloys 10

1.3.2 Transition Metal Oxides/Sulfides 12

1.4 Atomically Dispersed Metal in Carbon Materials 19

1.5 Metal-Free ORR Electrocatalysts 23

1.6 Conclusion 25

References 26

2 Electrocatalytic Oxygen Evolution Reaction 35
Guanyu Liu and Joel W. Ager

2.1 Introduction 35

2.2 Bioinspiration: OER in Photosystem II 36

2.3 Fundamentals of Electrocatalytic OER 36

2.3.1 Electrode Substrate 37

2.3.2 Electrolyte 38

2.3.3 Onset Potential and Overpotential 38

2.3.4 Tafel Analysis of the Rate-Determining Step 38

2.3.5 pH Dependence: The Nernst Equation 39

2.3.6 Long-Term Stability 41

2.3.7 Other Parameters 41

2.4 Reaction Mechanisms 41

2.4.1 WNA Mechanism 42

2.4.2 I2M Mechanism 44

2.5 OER Catalysts 44

2.5.1 Molecular OER Catalysts 44

2.5.1.1 Ru- and Ir-Based Molecular Catalysts 45

2.5.1.2 Earth-Abundant Transition Metal-Based Molecular Catalysts 46

2.5.1.3 Stabilization Strategies for Molecular Catalysts 47

2.5.1.4 All-Inorganic Polyoxometalates 48

2.5.2 Heterogeneous OER Catalysts 48

2.5.2.1 Metal Oxides 48

2.5.2.2 (Oxy)Hydroxides and Double Hydroxides 54

2.5.2.3 Metal Chalcogenides 55

2.5.2.4 Metal Pnictides 57

2.5.2.5 Carbon-Based Materials 58

2.5.2.6 Crystalline Frameworks and Their Derivatives 59

2.6 Challenges for Practical Catalytic Electrodes for OER 62

2.6.1 Industrially Viable Fabrication Techniques 62

2.6.2 Gas Bubble Formation on the Surface of Electrodes 62

2.6.3 Novel Approaches Toward Catalyst Discovery 65

2.7 Conclusions 67

References 68

3 Electrochemical Hydrogen Evolution Reaction 87
Guoqiang Zhao and Wenping Sun

3.1 Introduction 87

3.2 HER Mechanism 89

3.2.1 HER Mechanism in Acid Media 89

3.2.2 HER Mechanism in Alkaline Media 93

3.3 Key Parameters for Evaluating Catalytic Activity 96

3.3.1 Overpotential 96

3.3.2 Turnover Frequency 97

3.4 PGMs-Based Electrocatalysts 98

3.4.1 PGM Alloys 99

3.4.2 PGM Heterostructured Electrocatalysts 101

3.4.3 PGM Single-Atom Electrocatalysts 106

3.5 PGM-Free Materials 108

3.5.1 2D Transition Metal Dichalcogenides 108

3.5.2 Transition Metal Phosphorus/Nitrides/Carbides 111

3.5.3 PGM-Free Heterostructured Electrocatalysts 112

3.6 Summary 117

References 118

4 Electrocatalytic Water Splitting 123
Suraj Gupta

4.1 Introduction 123

4.2 Fundamental Concepts 124

4.2.1 Electric Double Layer 124

4.2.2 Standard Electrode Potential 125

4.2.3 Overpotential 129

4.2.4 Electrode Kinetics 129

4.3 Industrial Systems for Electrocatalytic Water Splitting 133

4.3.1 Alkaline Water Electrolyzers 133

4.3.2 Proton Exchange Membrane Water Electrolyzers 135

4.3.2.1 Membrane Electrode Assembly 136

4.3.2.2 Current Collectors 137

4.3.2.3 Bipolar/Separator Plates 138

4.3.3 Zero-Gap AWE 138

4.3.4 Comparing PEMWE and AWE 139

4.3.5 Other Types of Water Electrolyzers 141

4.3.5.1 Solid Oxide Electrolyzers 141

4.3.5.2 Microbial Electrolyzers (MEs) 144

4.4 Electrocatalysts for HER and OER 145

4.5 Electrocatalytic Seawater Splitting 147

4.5.1 Demographic Analysis 147

4.5.2 Challenges in Electrocatalytic Seawater Splitting 147

4.5.3 State-of-the-Art 151

4.5.4 Prospects for Electrocatalytic Splitting of Seawater 153

4.6 Conclusions 154

References 154

5 Electrochemical Carbon Dioxide Reduction Reaction 159
Yating Zhu, Congyong Wang, Zengqiang Gao, Junjun Li, and Zhicheng Zhang

5.1 Introduction 159

5.2 Principles 160

5.2.1 The Conversion of CO2 to C1 Products 160

5.2.2 The Conversion of CO2 to Multi-Carbon Products 161

5.3 Materials for Electrochemical CO2RR 163

5.3.1 Metallic Materials 163

5.3.1.1 Transition Metallic Materials 163

5.3.1.2 Other Metallic Materials 165

5.3.2 Carbon Materials 165

5.3.2.1 Carbon Nanofibers 167

5.3.2.2 Carbon Nanotubes 167

5.3.2.3 Mesoporous Carbon 168

5.3.2.4 Graphene (Graphene Quantum Dots) 168

5.3.2.5 Diamond 170

5.3.3 Organic Framework Materials 171

5.3.3.1 MetalOrganic Frameworks 172

5.3.3.2 Covalent Organic Frameworks 176

5.4 Conclusion 178

References 180

6 Electrochemical N2 Reduction 183
Yulu Yang, Jiandong Liu, Huapin Wang, and Jianmin Ma

6.1 Introduction 183

6.2 Fundamentals of Electrocatalytic Nitrogen Reduction 184

6.3 Product Detection and Efficiency Evaluation 186

6.4 NRR Catalysts 188

6.4.1 Noble Metal Catalysts 188

6.4.1.1 Au Base Catalyst 188

6.4.1.2 Ru Base Catalyst 190

6.4.1.3 Pd Base Catalyst 191

6.4.1.4 Pt Base Catalyst 191

6.4.2 Non-noble Metal Catalyst 191

6.4.2.1 Mo Base Catalyst 194

6.4.2.2 Ni, Co and Fe Base Catalyst 197

6.4.2.3 Metal-Free Catalysts 197

6.4.3 Monatomic Catalysts 197

6.5 Conclusion and Prospects 202

References 202

7 Photoelectrochemical Water Splitting 205
Yangqin Gao, Ge Lei, Zhijie Tian, Hongying Zhu, and Lianzheng Ma

7.1 Introduction 205

7.2 Photoelectrochemical Cells 208

7.2.1 Water Splitting 209

7.2.2 Types of Photoelectrochemical Devices 209

7.2.2.1 Photoelectrolysis Cell 210

7.2.2.2 Photo-Assisted Electrolysis Cell 210

7.2.2.3 Photovoltaic Electrolysis Cell 210

7.3 Basic Concepts in Semiconductors 211

7.3.1 Electronic Properties of Semiconductors 211

7.3.2 Optical Properties of Semiconductors 218

7.3.3 Quasi Thermal Equilibrium and Quasi Fermi Level Splitting 222

7.4 General Properties of a Semiconductor/Liquid Junction 224

7.4.1 Equilibrium State at a Semiconductor/Liquid Junction 224

7.4.2 Charge Transfer at a Semiconductor/Liquid Junction 229

7.5 The Current-Voltage Behaviours of a Semiconductor/Liquid Junction 231

7.5.1 The Current-Voltage Characteristics of a Semiconductor/Liquid Junction in Dark 231

7.5.2 The Current-Voltage Characteristics of a Semiconductor/Liquid Junction under Illumination 233

7.6 Energy Conversion Efficiency 234

7.7 Summary 235

References 236

8 Photoelectrocatalytic Solar Water Splitting 241
Deyu Liu and Yongbo Kuang

8.1 Introduction 241

8.2 Basic Concepts of Nonbiased PEC System 242

8.2.1 Thermodynamics of PEC System 242

8.2.2 Photoelectrodes and Photoelectrochemical Cells 244

8.2.3 Unbiased PEC Solar Water Splitting Cells 245

8.2.4 Selection of Semiconducting Materials 246

8.3 Design of Photoelectrodes from System-Wide View 250

8.3.1 From Semiconductor Materials to Photoelectrodes 250

8.3.2 Parameters of the Photoelectrodes 252

8.3.3 Functionalization Layers and Cocatalysts 255

8.3.4 Testing and Operation Conditions 258

8.4 Design of Integrated PEC Systems 261

8.5 Techno-Economic Assessment 264

8.6 Summary and Overlook 268

References 271

9 Photoelectrochemical Reduction of CO2 275
Yuchen Qin and Haoyi Wu

9.1 Introduction 275

9.2 Fundamental Principles of PEC CO2 Reduction 276

9.2.1 Mechanism 276

9.2.2 Reaction Conditions 277

9.2.2.1 pH Value 277

9.2.2.2 Electrolyte Type 277

9.2.2.3 Reaction Temperature and Pressure 278

9.2.3 Evaluation Parameters for PEC CO2 Reduction 278

9.2.3.1 Product Evolution Rate and Catalytic Current Density 278

9.2.3.2 Faradaic Efficiency 278

9.2.3.3 Turnover Number and Turnover Frequency 278

9.2.3.4 Quantum Yield 279

9.3 Strengthen Strategies for PEC CO2Reduction 279

9.3.1 Advanced Design for Photoelectrode 279

9.3.1.1 Photocathodes and Dark Anodes 279

9.3.1.2 Photoanodes and Dark Cathodes 285

9.3.1.3 Photoanodes and Photocathodes 286

9.3.1.4 PEC-Photovoltaic Cell Tandem and Wireless Monolithic Devices 286

9.3.2 PEC Reactor Configuration 287

9.3.2.1 Light Source 288

9.3.2.2 Heat Transfer 289

9.3.2.3 Utilization of CO2 289

9.3.2.4 Classification of Reactors 289

9.4 Summary and Perspectives 289

References 292

10 Photoelectrochemical Oxygen Evolution 301
Hoi Ying Chung, Hao Wu, Xuelian Wu, Chenliang Su, and Yun Hau Ng

10.1 Introduction of Photoelectrochemical Oxygen Evolution 301

10.2 Working Principles of Photoelectrochemical Oxygen Evolution 302

10.3 Promising Visible Light Active Photoanode for PEC Oxygen Evolution 305

10.3.1 Tungsten Oxide (WO3) Photoanode 305

10.3.2 Hematite (-Fe2O3) Photoanode 308

10.3.3 Bismuth-Based Ternary Oxide Photoanode 311

10.3.3.1 Bismuth vanadate (BiVO4) 312

10.3.3.2 Bismuth Tungstate (Bi2WO6) 319

10.3.3.3 Bismuth Molybdate (Bi2MoO6) 322

10.3.4 Tantalum Oxynitride (TaON) and Tantalum Nitride (Ta3N5) 324

10.4 Summary and Outlook 328

References 329

11 Photoelectrochemical Nitrogen Reduction Reaction 339
Gnanaprakasam Janani, Subramani Surendran, Hyeonuk Choi, and Uk Sim

11.1 Introduction 339

11.2 Nitrogen Reduction Reaction 341

11.3 Photoelectrochemistry for Provision of Sustainable Energy Sources 342

11.4 Fundamentals of Photoelectrochemical Nitrogen Reduction Reaction (PEC NRR) 344

11.5 Hitches in NRR 347

11.5.1 Semiconductor Considerations 347

11.5.2 H2 Evolution Reaction and Selectivity 348

11.6 Mechanisms 350

11.7 Contribution of Catalysts in PEC NRR 352

11.7.1 Semiconductors 352

11.7.2 Plasmon-Induced Ammonia Synthesis 360

11.7.3 Black Phosphorus-based Catalysts 366

11.7.4 Role of Diamond 367

11.8 Beyond Conventional Catalysts 369

11.8.1 Electrolytes 370

11.8.2 Diffusion of N2 Gas 370

11.8.3 Prototypes 370

11.8.4 N2 Adsorption and Activation on the Catalyst Surface 371

11.9 Methods to Measure Ammonia 373

11.9.1 Colorimetric Method 373

11.9.2 Ion Chromatography Method 374

11.9.3 Ion-Selective Electrode Method 374

11.9.4 Fluorometric Method 375

11.9.5 Conductivity Method 375

11.9.6 Titrimetric Method 376

11.9.7 In situ Fourier Transform Infrared spectroscopy 376

11.9.8 Nuclear Magnetic Resonance 376

11.10 Formulas 377

11.11 From the Holy Grail to Practical Systems 377

11.12 Conclusion 378

References 378

12 Photocatalytic Oxygen Reduction 389
Hai-Ying Jiang and Xianguang Meng

12.1 Formation of ROS 389

12.2 Detection of ROS 393

12.2.1 Detection of 1O2 393

12.2.2 Detection of O2 394

12.3 Detection of H2O2 397

12.3.1 DPDPOD Method 397

12.3.2 DMP Method 398

12.4 Detection of OH 398

12.5 Applications of Photocatalytic Oxygen Reduction 402

12.5.1 Synthetic Applications 403

12.5.2 Environmental Applications 404

12.5.3 Photocatalytic H2O2 Synthesis 405

References 409

13 Photocatalytic Hydrogen Production 415
Zhen Li, Mengqing Hu, Yanqi Xu, Di Zhao, Shuaiyu Jiang, Kaicai Fan, Meng Zu, Mohammad Al-Mamun, Huajie Yin, Shan Chen, Yuhai Dou, Lei Zhang, Yu L. Zhong, Yun Wang, Shanqing Zhang, Porun Liu, and Huijun Zhao

13.1 Introduction 415

13.2 Fundamental of Heterogeneous Photocatalysis 416

13.2.1 History of Photocatalysis Hydrogen Evolution and Current Status 416

13.2.2 Thermodynamics of Photocatalytic Processes for Hydrogen Evolution 420

13.2.3 Evaluation Criteria of Efficiency for Photocatalytic Hydrogen Evolution 422

13.2.4 Key Parameters of Photocatalytic Processes 423

13.3 Enhancement for One-Step Photoexcitation for PCHER 425

13.3.1 Band Structure 425

13.3.2 Exposed Facet Engineering 427

13.3.3 Control on Microstructure and Surface Area 429

13.3.4 Doping /Vacancies/Defects 431

13.3.4.1 Metal Doping 432

13.3.4.2 Non-Metal Doping 433

13.3.4.3 Vacancies/Defects 435

13.3.5 Hole Scavenger 436

13.3.5.1 Inorganic Salts and Organic Salts 436

13.3.5.2 Organic Compounds 437

13.3.5.3 Lignocellulosic Biomass 439

13.4 Enhancement for Two-step Photoexcitation for PCHER 440

13.4.1 Surface Sensitization 442

13.4.1.1 Semiconductors Act as the Light Absorber 442

13.4.1.2 Semiconductors Act as the Reaction Sites 445

13.4.1.3 Semiconductors Act as Both Light Absorber and the Reaction Site 448

13.4.2 Type I, II, III Heterojunctions 449

13.4.3 Z-Scheme Heterojunctions 450

13.4.3.1 Z-Scheme with a Shuttle Redox Mediator 451

13.4.3.2 Z-Scheme with a Solid Mediator 453

13.4.3.3 Direct Z-Scheme 453

13.5 Enhancement with Other Operation Parameters 456

13.5.1 Backward/Side Reactions 457

13.5.2 Improved Mass Transfer 457

13.5.3 Corrosion Resistance 458

13.5.4 Temperature 459

13.5.5 Light Intensity 459

13.5.6 Solution pH 460

13.5.7 Design of Reactor 460

13.6 Summary and Perspectives 462

References 464

14 Photocatalytic Oxygen Evolution 485
Wenzhang Li and Keke Wang

14.1 Introduction 485

14.2 Basic of Photocatalytic Water Splitting 486

14.2.1 History of Photocatalytic Water Splitting 486

14.2.2 Fundamentals of Photocatalytic Water Splitting 489

14.2.3 Half-Reactions Using Sacrificial Electron Donors and Acceptors 491

14.3 Semiconductor Photocatalysts 492

14.3.1 Brief History of Semiconductor Photocatalysts 492

14.3.2 Advancements in Photocatalyst Materials 493

14.3.2.1 Doping 493

14.3.2.2 Heterostructures 499

14.3.2.3 Morphology Control 507

14.3.2.4 Cocatalyst Loading 510

14.4 Conclusion Remarks and Future Directions 513

References 514

15 Photocatalytic Overall Water Splitting 521
Ning Zhang

15.1 Background 521

15.2 Evaluation of Overall Water Splitting 524

15.2.1 Stoichiometric Evolved Gaseous H2 and O2 524

15.2.2 Calculation of Turnover Number 525

15.2.3 Calculation of Quantum Yield 526

15.3 Photocatalysts 526

15.3.1 Single Semiconductor 526

15.3.2 Z-Scheme System 530

15.3.3 Heterojunctions 532

15.3.4 Polymers 535

15.4 Conclusions and Prospects 538

References 538

16 Photocatalytic CO2 Reduction 541
Deli Jiang, Qi Song, Yuyan Xu, and Di Li

16.1 Introduction 541

16.2 Principle and Mechanism of CO2 Reduction 542

16.2.1 Thermodynamics of CO2 Reduction 542

16.2.2 Kinetics of CO2 Reduction 543

16.2.3 CO2 Adsorption Configurations 544

16.3 Strategies to Improve the Photocatalytic CO2 Reduction Activities 544

16.3.1 Defect Engineering 545

16.3.1.1 Anions Vacancies 545

16.3.1.2 Cations Vacancies 547

16.3.2 Loading of Metal Co-catalyst 550

16.3.2.1 Loading of Pt Nanoparticles 550

16.3.2.2 Loading of Pd Nanoparticles 551

16.3.2.3 Loading of Ag Nanoparticles 553

16.3.2.4 Loading of Alloys Nanoparticles 555

16.3.3 Construction of Heterojunctions 557

16.3.3.1 II-Typical Heterojunctions 558

16.3.3.2 Z-Scheme Heterojunction 559

16.4 Conclusions 562

Acknowledgment 562

References 562

Index 569

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.