Matrix Algebra From a Statistician's Perspective

106,99 €
(inkl. MwSt.)
In den Warenkorb

Lieferbar innerhalb 1 - 2 Wochen

Bibliografische Daten
ISBN/EAN: 9780387783567
Sprache: Englisch
Umfang: xvi, 634 S.
Format (T/L/B): 3.5 x 23.6 x 15.7 cm
Auflage: 1. Auflage 2008
Einband: kartoniertes Buch

Beschreibung

A knowledge of matrix algebra is a prerequisite for the study of much of modern statistics, especially the areas of linear statistical models and multivariate statistics. This reference book provides the background in matrix algebra necessary to do research and understand the results in these areas. Essentially self-contained, the book is best-suited for a reader who has had some previous exposure to matrices. Solultions to the exercises are available in the author''s"Matrix Algebra: Exercises and Solutions."

Autorenportrait

David A. Harville is a research staff member in the Mathematical Sciences Department of the IBM T.J.Watson Research Center. Prior to joining the Research Center he spent ten years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories (at Wright-Patterson, FB, Ohio, followed by twenty years as a full professor in the Department of Statistics at Iowa State University. He has extensive experience in the area of linear statistical models, having taught (on numberous occasions) M.S.and Ph.D.level courses on that topic,having been the thesis adviser of 10 Ph.D. students,and having authored over 60 research articles. His work has been recognized by his election as a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and as a member of the International Statistical Institute and by his having served as an associate editor of Biometrics and of the Journal of the American Statistical Association.

Leseprobe

Leseprobe

Inhalt

Preface. - Matrices. - Submatrices and partitioned matricies. - Linear dependence and independence. - Linear spaces: row and column spaces. - Trace of a (square) matrix. - Geometrical considerations. - Linear systems: consistency and compatability. - Inverse matrices. - Generalized inverses. - Indepotent matrices. - Linear systems: solutions. - Projections and projection matrices. - Determinants. - Linear, bilinear, and quadratic forms. - Matrix differentiation. - Kronecker products and the vec and vech operators. - Intersections and sums of subspaces. - Sums (and differences) of matrices. - Minimzation of a second-degree polynomial (in n variables) subject to linear constraints. - The Moore-Penrose inverse. - Eigenvalues and Eigenvectors. - Linear transformations. - References. - Index.

Informationen gemäß Produktsicherheitsverordnung

Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg