Beschreibung
Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.
Inhalt
Mathematical and statistical preliminaries.- Computer storage and arithmetic.- Algorithms and programming.- Approximation of functions and numerical quadrature.- Numerical linear algebra.- Solution of nonlinear equations and optimization.- Generation of random numbers.- Graphical methods in computational statistics.- Tools for identification of structure in data.- Estimation of functions.- Monte Carlo methods for statistical inference.- Data randomization, partitioning, and augmentation.- Bootstrap methods.- Estimation of probability density functions using parametric models.- Nonparametric estimation of probability density functions.- Statistical learning and data mining.- Statistical models of dependencies.
Informationen gemäß Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg