True Digital Control

Statistical Modelling and Non-Minimal State Space Design

115,00 €
(inkl. MwSt.)
In den Warenkorb

Nachfragen

Bibliografische Daten
ISBN/EAN: 9781118521212
Sprache: Englisch
Umfang: 360 S.
Auflage: 1. Auflage 2013
Einband: gebundenes Buch

Beschreibung

InhaltsangabePreface xiii List of Acronyms xv 1 Introduction 1 1.1 Control Engineering and Control Theory 2 1.2 Classical and Modern Control 5 1.3 The Evolution of the NMSS Model Form 8 1.4 True Digital Control 11 1.5 Book Outline 12 1.6 Concluding Remarks 13 References 14 2 DiscreteTime Transfer Functions 17 2.1 DiscreteTime TF Models 18 2.2 Stability and the Unit Circle 24 2.3 Block Diagram Analysis 26 2.4 DiscreteTime Control 28 2.5 Continuous to Discrete-Time TF Model Conversion 36 2.6 Concluding Remarks 38 References 38 3 Minimal State Variable Feedback 41 3.1 Controllable Canonical Form 44 3.2 Observable Canonical Form 50 3.3 General State Space Form 53 3.4 Controllability and Observability 58 3.5 Concluding Remarks 61 References 62 4 NonMinimal State Variable Feedback 63 4.1 The NMSS Form 64 4.2 Controllability of the NMSS Model 68 4.3 The Unity Gain NMSS Regulator 69 4.4 Constrained NMSS Control and Transformations 77 4.5 Worked Example with Model Mismatch 81 4.6 Concluding Remarks 85 References 86 5 True Digital Control for Univariate Systems 89 5.1 The NMSS Servomechanism Representation 93 5.2 Proportional-Integral-Plus Control 98 5.3 Pole Assignment for PIP Control 101 5.4 Optimal Design for PIP Control 110 5.5 Case Studies 116 5.6 Concluding Remarks 119 References 120 6 Control Structures and Interpretations 123 6.1 Feedback and Forward Path PIP Control Structures 123 6.2 Incremental Forms for Practical Implementation 131 6.3 The Smith Predictor and its Relationship with PIP Design 137 6.4 Stochastic Optimal PIP Design 142 6.5 Generalised NMSS Design 153 6.6 Model Predictive Control 157 6.7 Concluding Remarks 163 References 164 7 True Digital Control for Multivariable Systems 167 7.1 The Multivariable NMSS (Servomechanism) Representation 168 7.2 Multivariable PIP Control 175 7.3 Optimal Design for Multivariable PIP Control 177 7.4 MultiObjective Optimisation for PIP Control 186 7.5 Proportional-Integral-Plus Decoupling Control by Algebraic Pole Assignment 192 7.6 Concluding Remarks 195 References 196 8 DataBased Identification and Estimation of Transfer Function Models 199 8.1 Linear Least Squares, ARX and Finite Impulse Response Models 200 8.2 General TF Models 211 8.3 Optimal RIV Estimation 218 8.4 Model Structure Identification and Statistical Diagnosis 231 8.5 Multivariable Models 243 8.6 Continuous-Time Models 248 8.7 Identification and Estimation in the Closed-Loop 253 8.8 Concluding Remarks 260 References 261 9 Additional Topics 265 9.1 The delta-Operator Model and PIP Control 266 9.2 Time Variable Parameter Estimation 279 9.3 StateDependent Parameter Modelling and PIP Control 290 9.4 Concluding Remarks 298 References 298 A Matrices and Matrix Algebra 301 References 310 B The Time Constant 311 Reference 311 C Proof of Theorem 4.1 313 References 314 D Derivative Action Form of the Controller 315 E Block Diagram Derivation of PIP Pole Placement Algorithm 317 F Proof of Theorem 6.1 321 Reference 322 G The CAPTAIN Toolbox 323 References 325 H The Theorem of D.A. Pierce (1972) 327 References 328 Index 329

Autorenportrait

InhaltsangabePreface xiii List of Acronyms xv 1 Introduction 1 1.1 Control Engineering and Control Theory 2 1.2 Classical and Modern Control 5 1.3 The Evolution of the NMSS Model Form 8 1.4 True Digital Control 11 1.5 Book Outline 12 1.6 Concluding Remarks 13 References 14 2 DiscreteTime Transfer Functions 17 2.1 DiscreteTime TF Models 18 2.2 Stability and the Unit Circle 24 2.3 Block Diagram Analysis 26 2.4 DiscreteTime Control 28 2.5 Continuous to Discrete-Time TF Model Conversion 36 2.6 Concluding Remarks 38 References 38 3 Minimal State Variable Feedback 41 3.1 Controllable Canonical Form 44 3.2 Observable Canonical Form 50 3.3 General State Space Form 53 3.4 Controllability and Observability 58 3.5 Concluding Remarks 61 References 62 4 NonMinimal State Variable Feedback 63 4.1 The NMSS Form 64 4.2 Controllability of the NMSS Model 68 4.3 The Unity Gain NMSS Regulator 69 4.4 Constrained NMSS Control and Transformations 77 4.5 Worked Example with Model Mismatch 81 4.6 Concluding Remarks 85 References 86 5 True Digital Control for Univariate Systems 89 5.1 The NMSS Servomechanism Representation 93 5.2 Proportional-Integral-Plus Control 98 5.3 Pole Assignment for PIP Control 101 5.4 Optimal Design for PIP Control 110 5.5 Case Studies 116 5.6 Concluding Remarks 119 References 120 6 Control Structures and Interpretations 123 6.1 Feedback and Forward Path PIP Control Structures 123 6.2 Incremental Forms for Practical Implementation 131 6.3 The Smith Predictor and its Relationship with PIP Design 137 6.4 Stochastic Optimal PIP Design 142 6.5 Generalised NMSS Design 153 6.6 Model Predictive Control 157 6.7 Concluding Remarks 163 References 164 7 True Digital Control for Multivariable Systems 167 7.1 The Multivariable NMSS (Servomechanism) Representation 168 7.2 Multivariable PIP Control 175 7.3 Optimal Design for Multivariable PIP Control 177 7.4 MultiObjective Optimisation for PIP Control 186 7.5 Proportional-Integral-Plus Decoupling Control by Algebraic Pole Assignment 192 7.6 Concluding Remarks 195 References 196 8 DataBased Identification and Estimation of Transfer Function Models 199 8.1 Linear Least Squares, ARX and Finite Impulse Response Models 200 8.2 General TF Models 211 8.3 Optimal RIV Estimation 218 8.4 Model Structure Identification and Statistical Diagnosis 231 8.5 Multivariable Models 243 8.6 Continuous-Time Models 248 8.7 Identification and Estimation in the Closed-Loop 253 8.8 Concluding Remarks 260 References 261 9 Additional Topics 265 9.1 The delta-Operator Model and PIP Control 266 9.2 Time Variable Parameter Estimation 279 9.3 StateDependent Parameter Modelling and PIP Control 290 9.4 Concluding Remarks 298 References 298 A Matrices and Matrix Algebra 301 References 310 B The Time Constant 311 Reference 311 C Proof of Theorem 4.1 313 References 314 D Derivative Action Form of the Controller 315 E Block Diagram Derivation of PIP Pole Placement Algorithm 317 F Proof of Theorem 6.1 321 Reference 322 G The CAPTAIN Toolbox 323 References 325 H The Theorem of D.A. Pierce (1972) 327 References 328 Index 329

Leseprobe

Leseprobe