Computer Processing of Remotely-Sensed Images

eBook

76,99 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9781119502968
Sprache: Englisch
Umfang: 384 S., 76.72 MB
Auflage: 5. Auflage 2022
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

Computer Processing of Remotely-Sensed Images

A thorough introduction to computer processing of remotely-sensed images, processing methods, and applications

Remote sensing is a crucial form of measurement that allows for the gauging of an object or space without direct physical contact, allowing for the assessment and recording of a target under conditions which would normally render access difficult or impossible. This is done through the analysis and interpretation of electromagnetic radiation (EMR) that is reflected or emitted by an object, surveyed and recorded by an observer or instrument that is not in contact with the target. This methodology is particularly of importance in Earth observation by remote sensing, wherein airborne or satellite-borne instruments of EMR provide data on the planets land, seas, ice, and atmosphere. This permits scientists to establish relationships between the measurements and the nature and distribution of phenomena on the Earths surface or within the atmosphere.

Still relying on a visual and conceptual approach to the material, the fifth edition of this successful textbook provides students with methods of computer processing of remotely sensed data and introduces them to environmental applications which make use of remotely-sensed images. The new editions content has been rearranged to be more clearly focused on image processing methods and applications in remote sensing with new examples, including material on the Copernicus missions, microsatellites and recently launched SAR satellites, as well as time series analysis methods.

The fifth edition ofComputer Processing of Remotely-Sensed Images also contains:A cohesive presentation of the fundamental components of Earth observation remote sensing that is easy to understand and highly digestibleLargely non-technical language providing insights into more advanced topics that may be too difficult for a non-mathematician to understandIllustrations and example boxes throughout the book to illustrate concepts, as well as revised examples that reflect the latest informationReferences and links to the most up-to-date online and open access sources used by students

Computer Processing of Remotely-Sensed Images is a highly insightful textbook for advanced undergraduates and postgraduate students taking courses in remote sensing and GIS in Geography, Geology, and Earth& Environmental Science departments.

Autorenportrait

Paul M. Mather, PhD,now deceased, was Professor Emeritus at the University of Nottingham, UK.

Magaly Koch, PhD, is a Professor at Boston University, USA.

Inhalt

Preface to the First Edition

Preface to the Second Edition

Preface to the Third Edition

Preface to the Fourth Edition

Preface to the Fifth Edition

List of Examples

Chapter 1: Remote Sensing: Basic Principles

1.1 Introduction

1.2 Electromagnetic radiation and its properties

1.2.1 Terminology

1.2.2 Nature of electromagnetic radiation

1.2.3 The electromagnetic spectrum

1.2.4 Sources of electromagnetic radiation

1.2.5 Interactions with the Earth's atmosphere

1.3 Interaction with Earth surface materials

1.3.1 Introduction

1.3.2 Spectral reflectance of Earth surface materials

1.3.2.1 Vegetation

1.3.2.2 Geology

1.3.2.3 Water bodies

1.3.2.4 Soils

1.4 Summary

References

Chapter 2: Remote Sensing Platforms and Sensors

2.1 Introduction

2.2 Characteristics of imaging remote sensing instruments

2.2.1 Spatial resolution

2.2.2 Spectral resolution

2.2.3 Radiometric resolution

2.3 Optical, near-infrared and thermal imaging sensors

2.3.1 Along-Track Scanning Radiometer (ATSR)

2.3.2 Advanced Very High Resolution Radiometer (AVHRR) and Visible Infrared Imager Radiometer Suite (VIIRS)

2.3.3 MODIS (MODerate Resolution Imaging Spectrometer)

2.3.4 Ocean observing instruments

2.3.5 IRS LISS

2.3.6 Landsat instruments

2.3.6.1 Landsat Multi-Spectral Scanner (MSS)

2.3.6.2 Landsat Thematic Mapper (TM)

2.3.6.3 Enhanced Thematic Mapper Plus (ETM+)

2.3.6.4 Landsat 8

2.3.6.5 Landsat 9

2.3.6.6 Landsat Next

2.3.7 SPOT sensors

2.3.7.1 SPOT High Resolution Visible (HRV)

2.3.7.2 Vegetation (VGT)

2.3.7.3 SPOT Follow-on Programme

2.3.8 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

2.3.9ESA Sentinel Programme

2.3.9.1 Sentinel-2 Multi-Spectral Imager (MSI)

2.3.9.2 Sentinel-3 OLCI and SLSTR

2.3.10 High-resolution commercial and small satellite systems

2.4 Microwave imaging sensors

2.4.1. European Space Agency Synthetic Aperture Spaceborne Radars

2.4.2 Radarsat

2.4.3 TerraSAR-X and COSMO-SkyMed

2.4.3 ALOS PALSAR

2.4.4 Sentinel-1 SAR

2.5 Summary

References

Chapter 3: Pre-Processing of Remotely Sensed Data

3.1 Introduction

3.2 Cosmetic operations

3.2.1 Missing scan lines

3.2.2 De-striping methods

3.2.2.1 Linear method

3.2.2.2 Histogram matching

3.2.2.3 Other de-striping methods

3.3 Geometric correction and registration

3.3.1 Orbital geometry model

3.3.2 Transformation based on ground control points

3.3.3 Resampling procedures

3.3.4 Image registration

3.3.5 Other geometric correction methods

3.4 Atmospheric correction

3.4.1 Background

3.4.2 Image-based methods

3.4.3 Radiative transfer models

3.4.4 Empirical line method

3.5 Illumination and view angle effects

3.6 Sensor calibration

3.7 Terrain effects

3.8 Summary

References

Chapter 4: Image Enhancement Techniques

4.1 Introduction

4.2 Human visual system

4.3 Contrast enhancement

4.3.1 Linear contrast stretch

4.3.2 Histogram equalisation

4.3.3 Gaussian stretch

4.4 Pseudocolour enhancement

4.4.1 Density slicing

4.4.2 Pseudocolour transform

4.5 Summary

References

Chapter 5: Image Transforms

5.1 Introduction

5.2 Arithmetic operations

5.2.1 Image addition

5.2.2 Image subtraction

5.2.3 Image multiplication

5.2.4 Image division and vegetation indices

5.3 Empirically based image transforms

5.3.1 Perpendicular Vegetation Index

5.3.2 Tasselled Cap (Kauth-Thomas) transformation

5.4 Principal Components Analysis

5.4.1 Standard Principal Components Analysis

5.4.2 Noise-adjusted Principal Components Analysis

5.4.3 Decorrelation stretch

5.5 Hue, Saturation and Intensity (HSI) transform

5.6 The Discrete Fourier Transform

5.6.1 Introduction

5.6.2 Two-dimensional Fourier transform

5.6.3 Applications of the Fourier transform

5.7 The Discrete Wavelet Transform

5.7.1 Introduction

5.7.2 The one-dimensional Discrete Wavelet Transform

5.7.3 The two-dimensional Discrete Wavelet Transform

5.8 Change Detection

5.8.1 Introduction

5.8.2 NDVI Difference Image

5.8.3 Principal Components Analysis

5.8.4 Canonical Correlation Change Analysis

5.8.5 Time Series Analysis

5.8.6 Summary

5.9 Image fusion

5.9.1 Introduction

5.9.2 Hue, Saturation and Intensity (HSI) algorithm.

5.9.3 Principal Components Analysis

5.9.4 Gram-Schmidt orthogonalisation

5.9.5 Wavelet based methods

5.9.6 Evaluation Subjective methods

5.9.7 Evaluation  Objective methods

5.10 Summary

References

Chapter 6: Filtering Techniques

6.1 Introduction

6.2 Spatial domain low-pass (smoothing) filters

6.2.1 Moving average filter

6.2.2 Median filter

6.2.3 Adaptive filters

6.3 Spatial domain high-pass (sharpening) filters

6.3.1 Image subtraction method

6.3.2 Derivative-based methods

6.4 Spatial domain edge detectors

6.5 Frequency domain filters

6.6 Summary

References

Chapter 7: Classification

7.1 Introduction

7.2 Geometrical basis of classification

7.3 Unsupervised classification

7.3.1 The k-means algorithm

7.3.2 ISODATA

7.3.3 A modified k-means algorithm

7.4 Supervised classification

7.4.1 Training samples

7.4.2 Statistical classifiers

7.4.2.1 Parallelepiped classifier

7.4.2.2 Centroid (k-means) classifier

7.4.2.3 Maximum likelihood method

7.4.3 Neural classifiers

7.5 Sub-pixel classification techniques

7.5.1 The linear mixture model

7.5.2 Spectral Angle Mapping

7.5.3 Independent Components Analysis

7.5.4 Fuzzy classifiers

7.6 More advanced approaches to image classification

7.6.1 Support Vector Machines

7.6.2 Decision tree classifiers

7.6.3 Other approaches to classification

7.6.3.1Rule based methods and the Genetic Algorithm

7.6.3.2Object-oriented methods

7.6.3.3Other methods

7.6.3.3.1Evidential Reasoning

7.6.3.3.2Bagging, boosting and ensembles of classifiers

7.7 Incorporation of non-spectral features

7.7.1 Texture

7.7.2 Use of external data

7.8 Contextual information

7.9 Feature selection

7.10 Classification accuracy

7.11 Summary

References

Chapter 8 Advanced Topics

8.1 Introduction

8.2 SAR interferometry

8.2.1 Basic principles

8.2.2 Interferometric processing

8.2.3 Problems in SAR interferometry

8.2.4 Applications of SAR interferometry

8.3 Imaging spectroscopy

8.3.1 Introduction

8.3.2 Processing imaging spectrometer data

8.3.2.1 Derivative analysis

8.3.2.2 Smoothing and denoising the reflectance spectrum

8.3.2.2.1 Savitzky-Golay polynomial smoothing

8.3.2.2.2 Denoising using the Discrete Wavelet Transform

8.3.2.3 Determination of red edge characteristics of vegetation

8.3.2.4 Continuum removal

8.4 Lidar

8.4.1 Introduction

8.4.2 Lidar details

8.4.3 Lidar applications

8.5 Summary

References

Appendix A

Index

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.