John David Jackson

eBook - A Course in Quantum Mechanics

76,99 €
(inkl. MwSt.)
E-Book Download

Download

Bibliografische Daten
ISBN/EAN: 9781119880394
Sprache: Englisch
Umfang: 416 S., 8.89 MB
Auflage: 1. Auflage 2023
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

A Course in Quantum Mechanics

Unique graduate-level textbook on quantum mechanics by John David Jackson, author of the renownedClassical Electrodynamics

A Course in Quantum Mechanics is drawn directly from J. D. Jacksons detailed lecture notes and problem sets. It is edited by his colleague and former student Robert N. Cahn, who has taken care to preserve Jacksons unique style. The textbook is notable for its original problems focused on real applications, with many addressing published data in accompanying tables and figures. Solutions are provided for problems that are critical for understanding the material and that lead to the most important physical consequences.

Overall, the text is comprehensive and comprehensible; derivations and calculations come with clearly explained steps. More than 120 figures illustrate underlying principles, experimental apparatus, and data.

InA Course in Quantum Mechanics readers will find detailed treatments of:Wave mechanics of de Broglie and Schrödinger, the Klein-Gordon equation and its non-relativistic approximation, free particle probability current, expectation values.Schrödinger equation in momentum space, spread in time of a free-particle wave packet, density matrix, Sturm-Liouville eigenvalue problem.WKB formula for bound states, example of WKB with a power law potential, normalization of WKB bound state wave functions, barrier penetration with WKB.Rotations and angular momentum, representations, Wigner d-functions, addition of angular momenta, the Wigner-Eckart theorem.Time-independent perturbation theory, Stark, Zeeman, Paschen-Back effects, time-dependent perturbation theory, Fermis Golden Rule.Atomic structure, helium, multiplet structure, Russell-Saunders coupling, spin-orbit interaction, Thomas-Fermi model, Hartree-Fock approximation.Scattering amplitude, Born approximation, allowing internal structure, inelastic scattering, optical theorem, validity criterion for the Born approximation, partial wave analysis, eikonal approximation, resonance.Semi-classical and quantum electromagnetism, Aharonov-Bohm effect, Lagrangian and Hamiltonian formulations, gauge invariance, quantization of the electromagnetic field, coherent states.Emission and absorption of radiation, dipole transitions, selection rules, Weisskopf-Wigner treatment of line breadth and level shift, Lamb shift.Relativistic quantum mechanics, Klein-Gordon equation, Dirac equation, two-component reduction, hole theory, Foldy-Wouthuysen transformation, Lorentz covariance, discrete symmetries, non-relativistic and relativistic Compton scattering.

Autorenportrait

John David Jackson (1925-2016) was a revered physics professor at the University of California, Berkeley, a faculty Senior Scientist at Lawrence Berkeley National Laboratory, and a member of the National Academy of Sciences. A theoretical physicist, he is well known for numerous publications and summer-school lectures in nuclear and particle physics, as well as for his definitive text,Classical Electrodynamics.

Robert N. Cahn is Senior Scientist, emeritus, at the Lawrence Berkeley National Laboratory. He has conducted research in theoretical and experimental particle physics and cosmology. The co-author, with Gerson Goldhaber, of the textExperimental Foundations of Particle Physics, he has taught physics at both the undergraduate and graduate levels.

Inhalt

Preface ix

About the Companion Website xi

1 Basics 1

1.1 Wave Mechanics of de Broglie and Schrödinger 1

1.2 Klein-Gordon Equation 2

1.3 Non-Relativistic Approximation 2

1.4 Free-Particle Probability Current 3

1.5 Expectation Values 4

1.6 Particle in a Static, Conservative Force Field 6

1.7 Ehrenfest Theorem 6

1.8 Schrödinger Equation in Momentum Space 8

1.9 Spread in Time of a Free-Particle Wave Packet 8

1.10 The Nature of Solutions to the Schrödinger Equation 9

1.11 A Bound-State Problem: Linear Potential 10

1.12 Sturm-Liouville Eigenvalue Problem 11

1.13 Linear Operators on Functions 13

1.14 Eigenvalue Problem for a Hermitian Operator 14

1.15 Variational Methods for Energy Eigenvalues 14

1.16 Rayleigh-Ritz Method 16

Problems 18

2 Reformulation 21

2.1 Stern-Gerlach Experiment 22

2.2 Linear Vector Spaces 22

2.3 Linear Operators 25

2.4 Unitary Transformations of Operators 27

2.5 Generalized Uncertainty Relation for Self-Adjoint Operators 27

2.6 Infinite-Dimensional Vector Spaces - Hilbert Space 28

2.7 Assumptions of Quantum Mechanics 29

2.8 Mixtures and the Density Matrix 30

2.9 Measurement 32

2.10 Classical vs. Quantum Probabilities 33

2.11 Capsule Review of Classical Mechanics and Conservation Laws 34

2.12 Translation Invariance and Momentum Conservation 37

2.13 Diracs ps and qs 38

2.14 Time Development of the State Vector 41

2.15 Schrödinger and Heisenberg Pictures 42

2.16 Simple Harmonic Oscillator 46

Problems 51

3 Wentzel-Kramers-Brillouin (WKB) Method 55

3.1 Semi-classical Approximation 55

3.2 Solution in One Dimension 56

3.3 Schrödinger Equation for the Linear Potential 58

3.4 Connection Formulae for the WKB Method 63

3.5 WKB Formula for Bound States 65

3.6 Example of WKB with a Power Law Potential 67

3.7 Normalization of WKB Bound State Wave Functions 68

3.8 Bohrs Correspondence Principle and Classical Motion 68

3.9 Power of WKB 72

3.10 Barrier Penetration with the WKB Method 73

3.11 Symmetrical Double-Well Potential 75

3.12 Application of the WKB Method to Ammonia Molecule 79

Problems 80

4 Rotations, Angular Momentum, and Central Force Motion 85

4.1 Infinitesimal Rotations 85

4.2 Construction of Irreducible Representations 88

4.3 Coordinate Representation of Angular Momentum Eigenvectors 91

4.4 Observation of Sign Change for Rotation by 2 92

4.5 Euler Angles, Wigner d-functions 95

4.6 Application to Nuclear Magnetic Resonance 98

4.7 Addition of Angular Momenta 104

4.8 Integration Over the Rotation Group 106

4.9 Gaunt Integral 108

4.10 Tensor Operators 109

4.11 Wigner-Eckart Theorem 112

4.12 Applications of the Wigner-Eckart Theorem 114

4.13 Two-Body Central Force Motion 118

4.14 The Coulomb Problem 121

4.15 Patterns of Bound States 125

4.16 Hellmann-Feynman Theorem 127

Problems 128

5 Time-Independent Perturbation Theory 135

5.1 Time-Independent Perturbation Expansion 135

5.2 Interlude: Spectra and History 137

5.3 Fine Structure of Hydrogen 139

5.4 Stark Effect in Ground-State Hydrogen 141

5.5 Perturbation Theory with Degeneracy 143

5.6 Linear Stark Effect in Hydrogen 145

5.7 Perturbation Theory with Near Degeneracy 146

5.8 Zeeman and Paschen-Back Effects in Hydrogen 149

Problems 149

6 Atomic Structure 151

6.1 Parity 151

6.2 Identical Particles and the Pauli Exclusion Principle 153

6.3 Atoms 158

6.4 Helium Atom 159

6.5 Periodic Table 164

6.6 Multiplet Structure, Russell-Saunders Coupling 165

6.7 Spin-Orbit Interaction 172

6.8 Intermediate Coupling 176

6.9 Thomas-Fermi Atom 180

6.10 Hartree-Fock Approximation 185

Problems 189

7 Time-Dependent Perturbation Theory and Scattering 197

7.1 Time-dependent Perturbation Theory 197

7.2 Fermis Golden Rule 202

7.3 Scattering Amplitude 204

7.4 Born Approximation 205

7.5 Scattering Theory from Fermis Golden Rule 207

7.6 Inelastic Scattering 211

7.7 Optical Theorem 214

7.8 Validity Criterion for the First Born Approximation 216

7.9 Eikonal Approximation 216

7.10 Method of Partial Waves 223

7.11 Behavior of the Cross Section and the Argand Diagram 225

7.12 Hard Sphere Scattering 227

7.13 Strongly Attractive Potentials and Resonance 229

7.14 Levinsons Theorem 232

Problems 234

8 Semi-Classical and Quantum Electromagnetic Field 241

8.1 Electromagnetic Hamiltonian and Gauge Invariance 241

8.2 Aharonov-Bohm Effect 242

8.3 Semi-Classical Radiation Theory 244

8.4 Scalar Field Quantization 246

8.5 Quantization of the Radiation Field 247

8.6 States of the Electromagnetic Field 252

8.7 Vacuum Expectation Values of E, E E over Finite Volume 253

8.8 Classical vs. Quantum Radiation 254

8.9 Quasi-Classical Fields and Coherent States 255

Problems 257

9 Emission and Absorption of Radiation 259

9.1 Matrix Elements and Rates 259

9.2 Dipole Transitions 261

9.3 General Selection Rules 262

9.4 Charged Particle in a Central Field 263

9.5 Decay Rates with LS Coupling 264

9.6 Line Breadth and Level Shift 267

9.7 Alteration of Spontaneous Emission from Changed Density of States 272

Problems 277

10 Relativistic Quantum Mechanics 281

10.1 Klein-Gordon Equation 281

10.2 Dirac Equation 283

10.3 Angular Momentum in Dirac Equation 285

10.4 Two-Component Equation and Plane-Wave Solutions 286

10.5 Diracs Treatment of Negative Energy States 288

10.6 Heisenberg Operators and Equations of Motion 289

10.7 Hydrogen in the Dirac Equation 290

10.8 Foldy-Wouthuysen Transformation 291

10.9 Lorentz Covariance 294

10.10 Discrete Symmetries 297

10.11 Bilinear Covariants 301

10.12 Applications to Electromagnetic Form Factors 302

10.13 Potential Scattering of a Dirac Particle 305

10.14 Neutron-Electron Scattering 307

10.15 Compton Scattering 312

Problems 322

A Dimensions and Units 327

B Mathematical Tools 329

B. 1 Contour Integration 329

B. 2 Green Function for Helmholtz Equation 333

B. 3 Wigner 3-j and 6-j Symbols 335

C Selected Solutions 339

C. 1 Chapter 1 339

C. 2 Chapter 2 340

C. 3 Chapter 3 343

C. 4 Chapter 4 352

C. 5 Chapter 5 362

C. 6 Chapter 6 366

C. 7 Chapter 7 375

C. 8 Chapter 8 377

C. 9 Chapter 9 380

C. 10 Chapter 10 387

Bibliography 393

Index 395

Informationen zu E-Books

Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.

Adobe-ID

Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig. 
 
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
 
Du hast dein Passwort zur Adobe-ID vergessen? Dann kannst du dies HIER neu beantragen.
 
 

Lesen auf dem Tablet oder Handy

Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App. 

Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire

Für Android-Geräte (z.B. Samsung) bekommst du die Lese-App Bluefire im GooglePlay-Store (oder auch: Aldiko)
 
Lesen auf einem E-Book-Reader oder am PC / MAC
 
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
 
 

Andere Geräte / Software

 

Kindle von Amazon. Wir empfehlen diese Geräte NICHT.

EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.

Software für Sony-E-Book-Reader

Wenn du einen Sony-Reader hast, dann findest du hier noch die zusätzliche Sony-Software.
 

Computer/Laptop mit Unix oder Linux

Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.