Basic Aspects of Hearing

Physiology and Perception, Advances in Experimental Medicine and Biology 962, Advances in Experimental Medicine and Biology 787

213,99 €
(inkl. MwSt.)
In den Warenkorb

Lieferbar innerhalb 1 - 2 Wochen

Bibliografische Daten
ISBN/EAN: 9781461415893
Sprache: Englisch
Umfang: xxvii, 549 S.
Auflage: 1. Auflage 2013
Einband: gebundenes Buch

Beschreibung

InhaltsangabeTopic 1: Peripheral processing.- Chapter 1. Mosaic evolution of the mammalian auditory periphery.- Chapter 2. A computer model of the auditory periphery and its application to the study of hearing.- Chapter 3. A probabilistic account of absolute auditory thresholds and its possible physiological basis.- Chapter 4. Cochlear compression: Recent insights from behavioural experiments.- Chapter 5. Improved psychophysical methods to estimate peripheral gain and compression.- Chapter 6. Contralateral efferent regulation of human cochlear tuning: Behavioural observations and computer model simulations.- Chapter 7. Modeling effects of precursor duration on behavioral estimates of cochlear gain.- Chapter 8. Is overshoot caused by an efferent reduction in cochlear gain?.- Chapter 9. Accurate estimation of compression in simultaneous masking enables the simulation of hearing impairment for normal-hearing listeners.- Chapter 10. Modelling the distortion produced by cochlear compression.- Topic 2: Temporal fine structure and pitch.- Chapter 11. How independent are the pitch and the interaural-time-difference mechanisms that rely on temporal fine structure information?.- Chapter 12. On the limit of neural phase-locking to fine-structure in humans.- Chapter 13. Effects of sensorineural hearing loss on temporal coding of harmonic and inharmonic tone complexes in the auditory nerve.- Chapter 14. A glimpsing account of the role of temporal fine structure information in speech recognition.- Chapter 15. Assessing the possible role of frequency-shift detectors in the ability to hear out partials in complex tones.- Chapter 16. Pitch perception: Dissociating frequency from fundamental-frequency discrimination.- Chapter 17. Pitch perception for sequences of impulse responses whose scaling alternates at every cycle.- Chapter 18. Putting the tritone paradox into context: insights from neural population decoding and human psychophysics.- Topic 3: Enhancement and perceptual compensation.- Chapter 19. Spectral and level effects in auditory enhancement.- Chapter 20. Enhancement of increments in spectral amplitude: further evidence for a mechanism based on central adaptation.- Chapter 21. Differential sensitivity to appearing and disappearing objects in complex acoustic scenes.- Chapter 22. Perceptual compensation when isolated test words are heard in room reverberation.- Chapter 23. A new approach to sound source identification.- Topic 4: Binaural processing.- Chapter 24. Maps of ITD in the Nucleus Laminaris of the Barn Owl.- Chapter 25. The influence of the envelope waveform on binaural tuning of neurons in the inferior colliculus and its relation to binaural perception.- Chapter 26. No evidence for ITD-specific adaptation in the frequency following response.- Chapter 27. Interaural time difference thresholds as a function of frequency.- Chapter 28. Interaural time processing when stimulus bandwidth differs at the two ears C.A. Brown,.- Chapter 29. Neural correlates of the perception of sound source separation.- Chapter 30. When and how envelope "rate-limitations" affect processing of interaural temporal disparities conveyed by high-frequency stimuli.- Chapter 31. The sound source distance dependence of the acoustical cues to location and their encoding by neurons in the inferior colliculus - implications for the Duplex theory.- Chapter 32. Cochlear contributions to the precedence effect.- Chapter 33. Off-frequency BMLD: the role of monaural processing.- Chapter 34. Measuring the apparent width of auditory sources in normal and impaired hearing.- Chapter 35. Psychophysics of human echolocation.- Topic 5: Speech and temporal processing.- Chapter 36. Formant-frequency variation and its effects on across-formant grouping in speech perception.- Chapter 37. Do we need STRFs for cocktail parties? - On the relevance of physiologically motivated features for human speech perception derived from automatic speech recognition.- Chapter 38. Modeling speech intelligibi