Beschreibung
The growth in the amount of data collected and generated has exploded in recent times with the widespread automation of various day-to-day activities, advances in high-level scienti?c and engineering research and the development of e?cient data collection tools. This has given rise to the need for automa- callyanalyzingthedatainordertoextractknowledgefromit,therebymaking the data potentially more useful. Knowledge discovery and data mining (KDD) is the process of identifying valid, novel, potentially useful and ultimately understandable patterns from massive data repositories. It is a multi-disciplinary topic, drawing from s- eral ?elds including expert systems, machine learning, intelligent databases, knowledge acquisition, case-based reasoning, pattern recognition and stat- tics. Many data mining systems have typically evolved around well-organized database systems (e.g., relational databases) containing relevant information. But, more and more, one ?nds relevant information hidden in unstructured text and in other complex forms. Mining in the domains of the world-wide web, bioinformatics, geoscienti?c data, and spatial and temporal applications comprise some illustrative examples in this regard. Discovery of knowledge, or potentially useful patterns, from such complex data often requires the - plication of advanced techniques that are better able to exploit the nature and representation of the data. Such advanced methods include, among o- ers, graph-based and tree-based approaches to relational learning, sequence mining, link-based classi?cation, Bayesian networks, hidden Markov models, neural networks, kernel-based methods, evolutionary algorithms, rough sets and fuzzy logic, and hybrid systems. Many of these methods are developed in the followingchapters.
Inhalt
Foundations.- Knowledge Discovery and Data Mining.- Automatic Discovery of Class Hierarchies via Output Space Decomposition.- Graph-based Mining of Complex Data.- Predictive Graph Mining with Kernel Methods.- TreeMiner: An Efficient Algorithm for Mining Embedded Ordered Frequent Trees.- Sequence Data Mining.- Link-based Classification.- Applications.- Knowledge Discovery from Evolutionary Trees.- Ontology-Assisted Mining of RDF Documents.- Image Retrieval using Visual Features and Relevance Feedback.- Significant Feature Selection Using Computational Intelligent Techniques for Intrusion Detection.- On-board Mining of Data Streams in Sensor Networks.- Discovering an Evolutionary Classifier over a High-speed Nonstatic Stream.
Informationen zu E-Books
Herzlichen Glückwunsch zum Kauf eines Ebooks bei der BUCHBOX! Hier nun ein paar praktische Infos.
Adobe-ID
Hast du E-Books mit einem Kopierschutz (DRM) erworben, benötigst du dazu immer eine Adobe-ID. Bitte klicke einfach hier und trage dort Namen, Mailadresse und ein selbstgewähltes Passwort ein. Die Kombination von Mailadresse und Passwort ist deine Adobe-ID. Notiere sie dir bitte sorgfältig.
Achtung: Wenn du kopiergeschützte E-Books OHNE Vergabe einer Adobe-ID herunterlädst, kannst du diese niemals auf einem anderen Gerät außer auf deinem PC lesen!!
Lesen auf dem Tablet oder Handy
Wenn du auf deinem Tablet lesen möchtest, verwende eine dafür geeignete App.
Für iPad oder Iphone etc. hole dir im iTunes-Store die Lese-App Bluefire
Lesen auf einem E-Book-Reader oder am PC / MAC
Um die Dateien auf deinen PC herunter zu laden und auf dein E-Book-Lesegerät zu übertragen gibt es die Software ADE (Adobe Digital Editions).
Andere Geräte / Software
Kindle von Amazon. Wir empfehlen diese Geräte NICHT.
EPUB mit Adobe-DRM können nicht mit einem Kindle von Amazon gelesen werden. Weder das Dateiformat EPUB, noch der Kopierschutz Adobe-DRM sind mit dem Kindle kompatibel. Umgekehrt können alle bei Amazon gekauften E-Books nur auf dem Gerät von Amazon gelesen werden. Lesegeräte wie der Tolino sind im Gegensatz hierzu völlig frei: Du kannst bei vielen tausend Buchhandlungen online Ebooks für den Tolino kaufen. Zum Beispiel hier bei uns.
Software für Sony-E-Book-Reader
Computer/Laptop mit Unix oder Linux
Die Software Adobe Digital Editions ist mit Unix und Linux nicht kompatibel. Mit einer WINE-Virtualisierung kommst du aber dennoch an deine E-Books.