Geradenkonfigurationen und Algebraische Flächen

Eine Veröffentlichung des Max-Planck-Instituts für Mathematik, Bonn, Aspekte der Mathematik

54,99 €
(inkl. MwSt.)
In den Warenkorb

Lieferbar innerhalb 1 - 2 Wochen

Bibliografische Daten
ISBN/EAN: 9783528089078
Sprache: Deutsch
Umfang: xii, 308 S., 30 s/w Illustr., 308 S. 30 Abb.
Auflage: 1. Auflage 2012
Einband: kartoniertes Buch

Beschreibung

Im Mittelpunkt des Buches steht eine Konstruktion mit Hilfe von Geradenkonfigurationen in der komplex-projektiven Ebene, die überraschende Beziehungen zur elementaren Geometrie aufzeigt: Aus der berühmten Miyaoka-Yau-Ungleichung für die Chernschen Zahlen einer algebraischen Fläche folgen Aussagen über Geraden- und Punktkonfigurationen, für die kein direkter Beweis bekannt ist. Der Grenzfall der Ungleichung ist eine Proportionalitätsbeziehung, die genau die Flächen charakterisiert, deren universelle Überlagerung die Vollkugel im komplex-zweidimensionalen Raum ist. Die Methoden gestatten die Konstruktion von Flächen aus dieser besonders interessanten Klasse, für die bislang wenig explizite Beispiele bekannt waren.

Informationen gemäß Produktsicherheitsverordnung

Hersteller:
Springer Vieweg in Springer Science + Business Media
juergen.hartmann@springer.com
Abraham-Lincoln-Straße 46
DE 65189 Wiesbaden