Bibliografische Daten
ISBN/EAN: 9783662580288
Sprache: Deutsch
Umfang: ix, 367 S., 16 s/w Illustr., 367 S. 16 Abb.
Format (T/L/B): 2.2 x 21 x 14.8 cm
Auflage: 6. Auflage 2018
Einband: kartoniertes Buch
Beschreibung
Was ist ein mathematischer Beweis? Wie lassen sich Beweise rechtfertigen? Gibt es Grenzen der Beweisbarkeit? Ist die Mathematik widerspruchsfrei? Kann man das Auffinden mathematischer Beweise Computern übertragen? Erst im 20. Jahrhundert ist es der mathematischen Logik gelungen, weitreichende Antworten auf diese Fragen zu geben: Im vorliegenden Werk werden die Ergebnisse systematisch zusammengestellt; im Mittelpunkt steht dabei die Logik erster Stufe. Die Lektüre setzt - außer einer gewissen Vertrautheit mit der mathematischen Denkweise - keine spezifischen Kenntnisse voraus. In der vorliegenden 5. Auflage finden sich erstmals Lösungsskizzen zu den Aufgaben.
Autorenportrait
Prof. Dr. Heinz-Dieter Ebbinghaus und Prof. Dr. Jörg Flum forschen am Mathematischen Institut der Universität Freiburg, Prof. Dr. Wolfgang Thomas am Lehrstuhl für Informatik 7 (Logik und Theorie diskreter Systeme) der RWTH Aachen.
Informationen gemäß Produktsicherheitsverordnung
Hersteller:
Springer Spektrum in Springer Science + Business Media
juergen.hartmann@springer.com
Tiergartenstr. 15-17
DE 69121 Heidelberg