Beschreibung
InhaltsangabePreface. 1. The Challenge. 1.1 Interconnect. 1.2 Device Metrics. 1.3 Cross-Connect Switches. 1.4 Transistor Operation above BVCEO. 1.5 CML circuits, PRBS generator. 1.6 Oscillators. 1.7 Outline of the book. References. 2. Interconnect Modelling, Analysis and Design. 2.1 Introduction. 2.2 Transmission Line Theory. 2.3 When to Include Transmission Line Effects. 2.4 Secondary Effects. 2.5 Resistivity-Frequency Mode Chart for a Microstrip Line. 2.6 Preferred Transmission Line Configurations. 2.7 Applying the Skin Effect Formulas to a SiGeBiCMOS Process. 2.8 Models including Skin Effect. 2.9 Signal Transfer Across a Transmission Line. 2.10 Interconnect Test Structures. 2.11 Modelling and Considerations of Digital Interconnect. 2.12 Circuit and Interconnect Design Flow. 2.13 Conclusions and Outlook. References. 3. Device Metrics. 3.1 Introduction. 3.2 Miller Effects. 3.3 Definitions based on y-Parameters. 3.4 Approximate Formulas for the Device Metrics. 3.5 Optimising a Technology for FA. 3.6 Relationship Between FA, FT and FMAX. 3.7 Trends in Device Metrics. 3.8 Other Trends. 3.9 Bipolar versus RF-CMOS. 3.10 Conclusions and Outlook. References. 4. CrossConnect Switch Design. 4.1 Introduction. 4.2 Switch Matrix Design. 4.3 Buffer Circuits. 4.4 Complete RF Signal Path. 4.5 Supply Decoupling. 4.6 Experimental Results. 4.7 Conclusions and Outlook. 5. Bias Circuits Tolerating Output Voltages above BVCEO. 5.1 Introduction. 5.2 Principle of Collector-Base Avalanche Current. 5.3 Analysis of Simple 2-Transistor Current Mirrors. 5.4 Analysis of Current Mirrors with Internal Buffer. 5.5 Avalanche Current Compensation. 5.6 Conclusions and Outlook. 6. Design of Synchronous High Speed CML Circuits. 6.1 Introduction. 6.2 PRBS Background. 6.3 InP Technology. 6.4 PRBS Generator Design. 6.5 Experimental Results. 6.6 Distributed Capacitive Loading Reviewed. 6.7 Conclusions and Outlook. References. 7. Analysis and Design of High Frequency LC-VCOs. 7.1 Introduction. 7.2 Input Impedance of a Cross-Coupled Differential Pair. 7.3 Input Impedance of a Capacitively-Loaded Emitter Follower. 7.4 Combining Negative Resistance and Output Buffer Functions. 7.5 LC-VCO Operating at a Frequency Close to FCROSS. 7.6 LC-VCO Operating at a Frequency Above FCROSS. 7.7 I/Q Signal Generation. 7.8 Conclusions and Outlook. References. Glossary. Appendix A. Index.
Autorenportrait
InhaltsangabePreface. 1. The Challenge. 1.1 Interconnect. 1.2 Device Metrics. 1.3 Cross-Connect Switches. 1.4 Transistor Operation above BVCEO. 1.5 CML circuits, PRBS generator. 1.6 Oscillators. 1.7 Outline of the book. References. 2. Interconnect Modelling, Analysis and Design. 2.1 Introduction. 2.2 Transmission Line Theory. 2.3 When to Include Transmission Line Effects. 2.4 Secondary Effects. 2.5 Resistivity-Frequency Mode Chart for a Microstrip Line. 2.6 Preferred Transmission Line Configurations. 2.7 Applying the Skin Effect Formulas to a SiGeBiCMOS Process. 2.8 Models including Skin Effect. 2.9 Signal Transfer Across a Transmission Line. 2.10 Interconnect Test Structures. 2.11 Modelling and Considerations of Digital Interconnect. 2.12 Circuit and Interconnect Design Flow. 2.13 Conclusions and Outlook. References. 3. Device Metrics. 3.1 Introduction. 3.2 Miller Effects. 3.3 Definitions based on y-Parameters. 3.4 Approximate Formulas for the Device Metrics. 3.5 Optimising a Technology for FA. 3.6 Relationship Between FA, FT and FMAX. 3.7 Trends in Device Metrics. 3.8 Other Trends. 3.9 Bipolar versus RF-CMOS. 3.10 Conclusions and Outlook. References. 4. Cross-Connect Switch Design. 4.1 Introduction. 4.2 Switch Matrix Design. 4.3 Buffer Circuits. 4.4 Complete RF Signal Path. 4.5 Supply Decoupling. 4.6 Experimental Results. 4.7 Conclusions and Outlook. 5. Bias Circuits Tolerating Output Voltages above BVCEO. 5.1 Introduction. 5.2 Principle of Collector-Base Avalanche Current. 5.3 Analysis of Simple 2-Transistor Current Mirrors. 5.4 Analysis of Current Mirrors with Internal Buffer. 5.5 Avalanche Current Compensation. 5.6 Conclusions and Outlook. 6. Design of Synchronous High Speed CML Circuits. 6.1 Introduction. 6.2 PRBS Background. 6.3 InP Technology. 6.4 PRBS Generator Design. 6.5 Experimental Results. 6.6 Distributed Capacitive Loading Reviewed. 6.7 Conclusionsand Outlook. References. 7. Analysis and Design of High Frequency LC-VCOs. 7.1 Introduction. 7.2 Input Impedance of a Cross-Coupled Differential Pair. 7.3 Input Impedance of a Capacitively-Loaded Emitter Follower. 7.4 Combining Negative Resistance and Output Buffer Functions. 7.5 LC-VCO Operating at a Frequency Close to FCROSS. 7.6 LC-VCO Operating at a Frequency Above FCROSS. 7.7 I/Q Signal Generation. 7.8 Conclusions and Outlook. References. Glossary. Appendix A. Index.
Inhalt
Preface. 1. The Challenge. 1.1 Interconnect. 1.2 Device Metrics. 1.3 Cross-Connect Switches. 1.4 Transistor Operation above BVCEO. 1.5 CML circuits, PRBS generator. 1.6 Oscillators. 1.7 Outline of the book. References. 2. Interconnect Modelling, Analysis and Design. 2.1 Introduction. 2.2 Transmission Line Theory. 2.3 When to Include Transmission Line Effects. 2.4 Secondary Effects. 2.5 Resistivity-Frequency Mode Chart for a Microstrip Line. 2.6 Preferred Transmission Line Configurations. 2.7 Applying the Skin Effect Formulas to a SiGeBiCMOS Process. 2.8 Models including Skin Effect. 2.9 Signal Transfer Across a Transmission Line. 2.10 Interconnect Test Structures. 2.11 Modelling and Considerations of Digital Interconnect. 2.12 Circuit and Interconnect Design Flow. 2.13 Conclusions and Outlook. References. 3. Device Metrics. 3.1 Introduction. 3.2 Miller Effects. 3.3 Definitions based on y-Parameters. 3.4 Approximate Formulas for the Device Metrics. 3.5 Optimising a Technology for FA. 3.6 Relationship Between FA, FT and FMAX. 3.7 Trends in Device Metrics. 3.8 Other Trends. 3.9 Bipolar versus RF-CMOS. 3.10 Conclusions and Outlook. References. 4. Cross-Connect Switch Design. 4.1 Introduction. 4.2 Switch Matrix Design. 4.3 Buffer Circuits. 4.4 Complete RF Signal Path. 4.5 Supply Decoupling. 4.6 Experimental Results. 4.7 Conclusions and Outlook. 5. Bias Circuits Tolerating Output Voltages above BVCEO. 5.1 Introduction. 5.2 Principle of Collector-Base Avalanche Current. 5.3 Analysis of Simple 2-Transistor Current Mirrors. 5.4 Analysis of Current Mirrors with Internal Buffer. 5.5 Avalanche Current Compensation. 5.6 Conclusions and Outlook. 6. Design of Synchronous High Speed CML Circuits. 6.1 Introduction. 6.2 PRBS Background. 6.3 InP Technology. 6.4 PRBS Generator Design. 6.5 Experimental Results. 6.6 Distributed Capacitive Loading Reviewed. 6.7 Conclusions and Outlook. References. 7. Analysis and Design of High Frequency LC-VCOs. 7.1 Introduction. 7.2 Input Impedance of a Cross-Coupled Differential Pair. 7.3 Input Impedance of a Capacitively-Loaded Emitter Follower. 7.4 Combining Negative Resistance and Output Buffer Functions. 7.5 LC-VCO Operating at a Frequency Close to FCROSS. 7.6 LC-VCO Operating at a Frequency Above FCROSS. 7.7 I/Q Signal Generation. 7.8 Conclusions and Outlook. References. Glossary. Appendix A. Index.
Informationen gemäß Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg